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Abstract

Our photometric observations of 18 main-belt binary systems in more than one
apparition revealed a strikingly high number of 15 having positively re-observed
mutual events in the return apparitions. Our simulations of the survey showed that
it cannot be due to an observational selection effect and that the data strongly
suggest that poles of mutual orbits between components of binary asteroids in the
primary size range 3–8 km are not distributed randomly: The null hypothesis of an
isotropic distribution of the orbit poles is rejected at a confidence level greater than
99.99%. Binary orbit poles concentrate at high ecliptic latitudes, within 30◦ of the
poles of the ecliptic. We propose that the binary orbit poles oriented preferentially
up/down-right are due to either of the two processes: (i) the YORP tilt of spin axes
of their parent bodies toward the asymptotic states near obliquities 0 and 180◦ (pre-
formation mechanism), or (ii) the YORP tilt of spin axes of the primary components
of already formed binary systems toward the asymptotic states near obliquities 0 and
180◦ (post-formation mechanism). The alternative process of elimination of binaries
with poles closer to the ecliptic by dynamical instability, such as the Kozai effect due
to gravitational perturbations from the Sun, does not explain the observed orbit pole
concentration. This is because for close binary asteroid systems, the gravitational
effects of primary’s irregular shape dominate the solar-tide effect.

Key words: Asteroids, binary;
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1 Introduction

Orientation of the orbital plane of components in a binary asteroid can be
estimated from photometric observations of their mutual events — occulta-
tions/eclipses. It requires observations taken over a range of geometries of the
system with respect to Earth and Sun. Scheirich and Pravec (2009) derived
or constrained orbit poles of 5 near-Earth asteroid binaries, taking advantage
of rapid changes of viewing geometries of the near-Earth binaries during their
approaches to Earth. Binary systems in the main belt of asteroids show a lim-
ited change of observing geometry during one apparition 1 and observations
over 2–3 apparitions are typically needed to estimate the orientation (ecliptic
longitude and latitude of the pole) of the mutual orbit for a main-belt asteroid
(MBA) binary.

We run a photometric survey for binaries among small asteroids since 2005.
Among 477 MBAs surveyed until May 2011, we found 45 binaries. Of them,
18 were re-observed in their return apparitions. Using the technique of Pravec
et al. (2006) and Scheirich and Pravec (2009), we analysed the data and es-
timated or constrained mutual orbits of the 18 binaries observed in 2–3 ap-
paritions. An interpretation of the sample of derived binary parameters must
take into account existing observational biases, see a theory of the selection
effects of the photometric technique of binary detection presented in Sect. 2.
A direct estimation of the biases present in the discovered sample of binaries is
complicated by a limited probability of covering the mutual event in a binary
with a priori unknown orbit period with a given set of survey observations.
This complication is overcome with analysis of the statistics of re-detections of
mutual events in the binaries in their return apparitions. The key advantage
is that a time distribution of the planned follow-up observations of the bina-
ries in the return apparitions was matched to their orbit periods determined
in the discovery apparition, which made our simulations of the observational
selection effects feasible.

2 Probability of photometric detection of a binary asteroid

The probability of the photometric detection of a binary asteroid is formulated
as follows:

Pdet = pme pcov pres , (1)

1 An asteroid’s photometric apparition is a time interval, usually a few weeks to
a few months long, when the asteroid is in favorable conditions (brightness, solar
elongation) allowing photometric observations of required accuracy and duration
during night. For main belt asteroids, it occurs around opposition with the Sun.
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where pme is a probability of occurrence of a mutual event (occultation or
eclipse) between the components of the system, pcov is a probability of covering
the mutual event with a given set of observations, and pres is a probability of
resolving the mutual event with the given photometric observations.

The probability of occurrence of a mutual event depends on the parameters
of the system:

pme ≡ pme(ǫ, aorb, e, D1, D2, component shapes, phase effect) , (2)

where ǫ is an obliquity of the mutual orbit of the binary components, aorb
and e are its semimajor axis and eccentricity, Di is a mean diameter of the
i-th component (D2 ≤ D1), and the probability also depends on shapes of
the components and their phase effect. In a general case, the pme function is
complex and it can be described with a numerical model. A qualitative un-
derstanding can be, however, obtained with analysing the special case of a
system with spherical components, zero eccentricity of the mutual orbit, and
zero solar phase, for which we get the following analytical formula:

pme =











1, if ǫ ≤ ic or ǫ ≥ (π − ic) ,

2
π
arcsin sin ic

sin ǫ
, if ic < ǫ < (π − ic) ,

(3)

where

ic = arcsin
1 + D2

D1

2aorb
D1

. (4)

Figure 1 shows the pme function for three values of sin ic, which cover a range
of this parameter for the binaries in our studied sample. The abscissa of |cos ǫ|
was chosen because an isotropic distribution of poles gives an uniform distri-
bution in cos ǫ. The plot illustrates the existing observational selection effect of
the photometric method favoring detections of binaries with obliquities close
to 0 and 180◦. The probablility of occurrence of mutual events reaches a min-
imum at obliquity ǫ = π

2
: pme(ǫ =

π
2
) = 2

π
ic, but it increases only slowly with

increasing |cos ǫ| until ǫ reaches ∼ 30◦ or 150◦. This selection effect causes
that an observed distribution of |cos ǫ| has a median value of ∼ 0.7 for an
original isotropic distribution of orbit poles (which has the median |cos ǫ| of
0.5). In other words, the selection effect modifies the original isotropic dis-
tribution with a half of systems having obliquities within ±30◦ of 90◦ to an
observed distribution with a half of observed binaries with obliquities within
about ±45◦ of 90◦.

The mean probability of occurrence of mutual events is

Pme =

∫ π
0 pme(ǫ)f(ǫ) dǫ
∫ π
0 f(ǫ) dǫ

, (5)
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where f(ǫ) is a number density of binary orbit poles. In the case of the isotropic
distribution of binary orbits, f(ǫ) = sin ǫ, we get

Pme = 1− cos ic +

π/2
∫

ic

pme(ǫ) sin ǫ dǫ . (6)

After further manipulation, we get

Pme = sin ic =
1 + D2

D1

2aorb
D1

. (7)

This describes another selection effect of the photometric method favoring
detections of close systems; the mean probability of occurrence of mutual
events for the isotropic distribution of orbit poles is inversely proportional to
the relative distance aorb/D1 between the components. This selection effect is
apparent also from Eq. (3) and Fig. 1, with pme being greater for closer systems
with greater ic. We point out that for real observations taken generally at non-
zero solar phases, the mutual event occurrence probabilities are increased by
a factor between 1 and 2 depending on the actual solar phase.

The probability of covering the mutual event with a given set of observations:

pcov ≡ pcov(Porb, time distribution of observations) , (8)

where Porb is a mutual orbit period of the binary components. For a given
distribution of observations, the probability has to be computed with a nu-
merical model. Nevertheless, a general trend is that this probability decreases
with increasing orbit period, further strengthening the selection effect towards
close systems. This probability is usually less than 1 for observations of a pre-
viously unknown binary where the orbit period is not known a priori and thus
a distribution of the observations cannot be matched to the orbit period. In
a case of planned re-observations of a known binary with determined orbit
period, however, the probability can be effectively set to 1 with scheduling
the observations so that to cover the full orbit. This highly simplifies simu-
lations of planned observations of known binaries in their return apparitions
and allows us to constrain a distribution of their orbit poles with analysis of
the re-observations in the post-discovery apparitions.

The probability of resolving mutual event, pres, depends on a depth of the
mutual event (F ) and photometric quality of the observations. The depth of
(relative brightness attenuation in) a total secondary event at zero solar phase
is Fsec = I2/(I1 + I2), where Ii is a light flux from the i-th component. For
components with the same albedo observed at zero phase angle, it converts to
Fsec = [1 + (D1/D2)

2]−1, and the depth of the primary event is Fprim = Fsec.
At non-zero phase angles and for non-central events, the depth of the mutual
event is computed with a numerical model, assuming a specific scattering law.
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The photometric quality of the observations affects the probability of resolving
the mutual event substantially. Generally, events with depth much greater
than photometric errors of the observations are resolved with a probability
approaching 1, while events with depth lower than the photometric errors are
usually buried in the noise and the probability of resolving them is close to 0.
For observations producing controlled and homogeneous data, the probability
of resolving mutual event is approximated with a step function:

pres =











0, if F < Flim ,

1, if F ≥ Flim ,
(9)

where Flim is a minimum detectable relative brightness attenuation.

Being equipped with the theory of photometric detection of a binary asteroid,
we will interpret our observations of binary asteroids presented in Section 3
with simulations of the survey observations given in Section 4.

3 Observations and binary parameters estimations

We run a long-term project of photometric observations of binary systems
among small asteroids called “Photometric Survey for Asynchronous Binary
Asteroids” since 2005. The collaborating station Palmer Divide Observatory
runs a parallel survey project aimed at describing rotations and binary sys-
tems in the Hungaria asteroids group (Warner et al. 2009a,c). Both surveys
used similar observing techniques and strategies, and they actually cooperated
and coordinated their observations; there was a major overlap of the lists of
stations participating in the two surveys. We joined observations of binaries
made within the two cooperating surveys and analysed them together as they
effectively worked as one joint binary asteroids survey.

Of 45 MBA binaries that we detected within the surveys by May 2011, 18
were re-observed in their return apparitions. The re-observations were done
for binaries that returned in favorable observational conditions (brightness
allowing getting photometric errors ≤ 0.03 mag, position in the sky allowing
observations longer than a few hours and away from dense star fields at low
galactic latitudes). No prediction of a probability of occurrence of mutual
events in the second apparition based on observations from the first apparition
was made, so the selection of binaries for re-observations was not affected by
their orbit poles.

Using methods described in Pravec et al. (2006), Pravec and Harris (2007),
and Scheirich and Pravec (2009), we estimated or constrained parameters of
the 18 binary systems, they are listed in Table 1. The modeling technique and
its modifications accounting for precession of the pericenter of an eccentric or-
bit and for possible presence of a third body in three of the studied systems are
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outlined in Section 3.1. The observations as well as additional estimated pa-
rameters are given in the electronic Supplementary Information. A comprehen-
sive table with the estimated parameters, including their uncertainties and ref-
erences, is available at web page http://www.asu.cas.cz/∼asteroid/binastdata.htm.
The original photometric data will be stored in ALCDEF archive (Stephens
et al. 2010).

Of the 18 binaries observed in more than one apparition, we detected mutual
events in 15 also upon their return. In the three cases of negative event detec-
tion in the return apparition, there were observed no apparent attenuations
with relative depth of 4% or greater. We cannot rule out possible occurrence
of very shallow events with depths below the 4%-event depth detection limit
of our survey, due to grazing eclipses or occultations; an occurrence of such
near-boundary events producing attenuations below the detection limit are
accounted for in the model of the survey that we present in the next section.

In Table 2, we list epochs and asteroid’s ecliptic longitudes and latitudes with
respect to Earth (L,B) and Sun (Lh, Bh) of the first observing session with
positive event detection in both the discovery and the return apparitions for
each of the 18 binaries. These were the key data for the simulations of the
binary survey that we present in Section 4. For the three systems that did not
show mutual events in the return apparition, we list an epoch of the observing
session closest to the middle of the observational run (that lasted from 3 to
17 days in the three cases).

3.1 Binary models

We modeled the binary systems using the technique of Scheirich and Pravec
(2009), modified to allow for precession of the pericenter. The observational
data were reduced using the standard technique described in Pravec et al.
(2006); a rotation lightcurve of the primary was fitted and subtracted from
the data. In three cases, namely Pogson, Polonskaya and Litva, there was
present also a second rotational lightcurve component with period different
from Porb. Its character leads us to suspect that it belongs to a third body in
the system, see our reasoning given in the discussions for the three asteroids
below. To account for presence of the third body, a total light flux scattered
towards observer was computed as I1 + I2 + I3, where Ii is the light flux from
the i-th body. As we did not constrain I3 from our observations (as we saw
no mutual events involving the third body), we run our models for the three
systems with a few values of I3 in a range from 0 and I1, i.e., sampling the
size range of the suspect third body from negligible size up to a size equal to
that of the primary. This way we estimated a sensitivity of our results on the
size of the third body.

In our model we represent irregular shape of the binary components with el-
lipsoids of revolution, namely an oblate spheroid for the primary and a prolate
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spheroid for the secondary, orbiting each other on Keplerian orbit. The sec-
ondary was assumed to rotate synchronously and its long axis was aligned with
the centers of the two bodies. Eccentricities of the mutual orbits were found to
be small, from 0 up to an upper limit that reached values from 0.03 (for 1453
Fennia) up to 0.20 for the case of (17260) 2000 JQ58 with the least constrained
eccentricity. In modeling the eccentric orbit, a precession of the line of apsides
was computed. A pericenter drift rate depends on primary’s polar flattening
(see Murray and Dermott 1999, eq. 6.249) that was only poorly estimated
from our observations —the primary’s axial ratio a1/c1 was constrained to be
in a range from 1 up to a certain upper limit in most cases— and we fitted
the pericenter drift rate as an independent parameter. Its initial values were
stepped in a range from zero to 30◦/day; this range encompasses all possible
values for the flattening and other parameters of the modeled binaries. To
reduce a complexity of the modeling, the upper limit on eccentricity was esti-
mated by fitting data from the best-covered apparition only. In modeling data
from all apparitions together, we set the eccentricity equal zero, neglecting
possible small effects of the pericenter precession.

The estimated model parameters are given in Table 1. The resulting pole
areas for 9 systems with unique solutions plus (2044) Wirt with a double
but narrow solution are shown in Figs. 2 to 20 (figures with even numbers).
All uncertainties and admissible ranges of the parameters estimated by the
numerical models correspond to 3σ confidence level (see Scheirich and Pravec
2009). Examples of the data for the orbital lightcurve components together
with the synthetic lightcurves for the best-fit solutions are presented in Figs. 3
to 21 (figures with odd numbers). The results for most systems are rather
routine and they are obvious from the table and figures, but we comment
below on the three systems where we suspect the presence of a third body.
Overall our estimated poles are at high ecliptic latitudes. We find it also
interesting that they are often close to the pole of the osculating heliocentric
orbit of the binary (generally precessing in space).

(1830) Pogson

We observed this system in three apparitions: from 2007-04-18.4 to 2007-06-
06.6, from 2008-09-02.8 to 2008-11-06.8, and from 2010-02-20.6 to 2010-04-
08.7. In all the three apparitions, the lightcurve data revealed two rotational
components with superimposed mutual events. The two rotational components
have periods of (2.57003±0.00006) h and (3.2626±0.0004) h (the uncertainties
are 1σ) with apparent amplitudes of 0.10–0.12 and 0.03 mag, respectively.
Both rotational components are present at all orbital phases including mutual
events, with unchanged shape in the event. The fact that the second rotational
component does not disappear in mutual events indicates that it is not a
rotation of the secondary. We consider that it may rather belong to a third
body in the system. 2 This proposed explanation will have to be confirmed and

2 An alternative explanation of that the apparent second rotational period could
be due to an excited rotation of the primary is not supported as the data do not
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a size and distance of the third body will have to be estimated with future
observations.

A solution for the pole and period of the mutual orbit given in Table 1 and
shown in Fig. 6 was obtained by fitting our model to the data for the orbital
lightcurve component, derived with subtracting both rotational components,
from all the three apparitions simultaneously. We analysed an effect of possible
presence of the third body on our modeling and estimated parameters. The size
ratio D2/D1 = 0.30±0.02 that was estimated from the depth of the secondary
mutual event becomes a lower limit if there is a third body contributing to
the total light of the system. Thus, in addition to running our orbit modeling
with the size ratio estimate of 0.30 that corresponds to a zero or negligible size
of the third body, we run the model also for a few cases with the third body
having a diameter in the range from zero up to D1. We found that the presence
of the third body had a negligible effect on the estimated orbit period, but it
affected the estimated orbit pole area. The admissible area of the pole shrinks
by up to a factor of three with the third body’s diameter increasing up to the
diameter of the primary (see Fig. 6).

(2006) Polonskaya

We observed this system in three apparitions: from 2005-11-01.0 to 2005-12-
07.1, from 2008-06-04.3 to 06.4, and from 2010-01-10.1 to 2010-02-22.3. Mutual
events were observed in the first and the third apparition only. In the second
apparition, we covered 61% of the orbit and there did not occur mutual events
with depth greater than 0.02 mag.

In all the three apparitions, the lightcurve data revealed two rotational com-
ponents (with superimposed mutual events in the first and the third appari-
tion). The two rotational components have periods of (3.11809 ± 0.00007) h
and (6.6593± 0.0004) h (the uncertainties are 1σ) with apparent amplitudes
of 0.08–0.10 and 0.07–0.10 mag, respectively. Like in the case of (1830) Pogson
described above, both rotational components of Polonskaya were present at all
orbital phases including mutual events with unchanged shapes in the events,
suggesting that it is not a rotation of the secondary but that it may rather
belong to a third body in the system. Like for Pogson, this will have to be
confirmed with future observations.

Combining data from the first and the last apparitions, we found five solutions
for the period and two solutions for the pole of the mutual orbit, fitting our
model to the data for the orbital lightcurve component, derived with subtract-
ing both rotational components. The estimated periods are Porb = 19.1407 h,
19.1507 h, 19.1553 h, 19.1607 h and 19.1654 h, with 3-σ errors 0.0001–0.0002 h.
Limiting values of the ecliptic latitudes for the admissible areas of the orbit

show a significant signal at linear combinations of the two observed frequencies; the
two rotational components appear purely additive (cf. data for tumbling asteroids
in Pravec et al. 2005).
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pole are Bp > +54◦ and < −60◦ (for model bulk density > 1.0 g cm−3 the
values of Bp are constrained to be > +71◦ and < −72◦).

An attempt to join in the data from the 2008 apparition where there occurred
no event deeper than 0.02 mag failed; for all the solutions from the 2005+2010
data, there were predicted observable events to occur during the times of the
2008 observations. This leads us to consider that some assumption of the
model might not hold. In particular, it is possible that the mutual orbit plane
of the components was not constant and that it precessed. If so, then the joint
solution of the 2005 and 2010 observations may be spurious.

(2577) Litva

We observed this system in two apparitions: from 2009-02-28.1 to 2009-04-01.9,
and from 2010-07-16.2 to 2010-08-31.3. In both apparitions, the lightcurve
data revealed two rotational components with superimposed mutual events.
In the 2010 apparition, the two rotational components had periods of 2.8129 h
and 5.6818 h with predominating uncertainties due to the synodic-sidereal
effect that were estimated to be about 0.0001 h and 0.0004 h, respectively.
In the 2009 apparition when there was a larger synodic-sidereal effect (about
0.0003 h and 0.002 h, respectively), the two periods were 2.8126 h and 5.684 h.
Apparent amplitudes of the two rotational components were 0.17 and 0.06 mag
at solar phases 11◦–22◦ in 2010, while they were somewhat greater, 0.24 and
0.09 mag at higher solar phases of 22◦–30◦ in the 2009 apparition. Inspecting
the behavior of the rotational components in the 2009 data where the mutual
events were covered thoroughly, we found both components were present at all
orbital phases including mutual events, with apparently unchanged shapes in
the events. The fact that the second rotational component does not disappear
in mutual events indicates that it is not a rotation of the secondary. Like in
the similar cases of (1830) Pogson and (2006) Polonskaya, we consider that
the second rotational component may rather belong to a third body in the
system.

A solution for the pole and period of the mutual orbit given in Table 1 and
shown in Fig. 10 was obtained by fitting our model to the data for the orbital
lightcurve component, derived with subtracting both rotational components,
from both apparitions simultaneously. We analysed the effect of possible pres-
ence of the third body on our modeling and estimated parameters. From the
depth of the mutual events observed in 2009, we estimated the size ratio
D2/D1 = 0.34±0.02. Analogously with the case of (1830) Pogson, in addition
to running our orbit modeling with the size ratio estimate of 0.34 that corre-
sponds to a zero or negligible size of the third body, we run the model also for
a few cases with the third body having a diameter in the range from zero up
to D1. We found that the presence of the third body had a negligible effect on
the estimated orbit period and only a small effect on the estimated orbit pole
area; the admissible area of the pole shrinks by ∼ 20% with the third body’s
diameter increasing up to the diameter of the primary (see Fig. 10).
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4 Simulations of the survey

The rate of 15 positive re-detections of the 18 binaries in their return appari-
tions is strikingly high. We simulated the survey, tested the null hypothesis
of isotropic distribution of binary orbit poles and found that it is rejected at
a high confidence level. We found that poles of mutual orbits of small bina-
ries concentrate at high ecliptic latitudes around the poles of the ecliptic. We
present results of the simulations in this section.

The model of the binary survey is analogous to that we used for simulations
of our survey for near-Earth asteroid binaries in Pravec et al. (2006), except
that in the present work we allowed for non-isotropic orbit pole distribution.
We used the following assumptions and approximations:

• Uniform distribution of orbit poles in Lp and in (a) |sinBp| = sinBx to 1, or
(b) |cos ǫ| = cos ǫx to 1, where Bx and ǫx is a lower and upper limit cutoff of
the distribution in ecliptic latitude and obliquity, respectively. For Bx = 0
and ǫx = 90◦, it is the isotropic distribution.

• Zero eccentricity of the mutual orbit.
• Spherical shape of both components.
• Same albedos for both components.
• Lommel-Seeliger scattering law for the distribution of apparent surface bright-
ness over the disc (see Kaasalainen et al. 2002).

• Bulk density of 2.0 g/cm3. The same bulk density is assumed for both
components, i.e., the mass ratio is estimated as (D2/D1)

3.
• The probability of resolving mutual event is approximated with the step
function given by Eq. (9): pres = 0 and 1 for the relative brightness attenu-
ation depth F < 4% and ≥ 4% of total light, respectively.

Except for the assumed distribution of binary orbit poles, which is actually
the property that we were testing in this work, the assumptions and approxi-
mations given above are supported by the observational data for the binaries,
or plausible ranges of deviation from them could not have significant effects in
the simulations. Only one of the assumptions, namely that of the bulk density
of 2.0 g/cm3, is not well constrained and it could produce a small but possibly
not entirely negligible systematic effect if not held; if the binaries had system-
atically lower or higher bulk densities than the assumed value, then detection
rates resulting from the simulations would be under- or overestimated, respec-
tively. A qualitative analysis of their effect on our simulations suggests that
systematically lower bulk densities would not affect our conclusions, and only
if the asteroid binaries had systematically much higher bulk densities we would
have to analyse their effects to our simulations closely. Such much higher bulk
densities appear unlikely, and we stay with the assumed value that is close to
the best estimate of a binary asteroid bulk density of 1.97 ± 0.24 g/cm3 for
1999 KW4 (Ostro et al. 2006).

As given in the first item above, we run the simulations for two variant distri-
butions of binary orbit poles: (a) orbit poles concentrated towards the poles
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of the ecliptic, and (b) orbit poles concentrated towards the poles of current
osculating heliocentric orbits of binary systems. The case (a) may be more
relevant, for following reasons: While being spun up by the YORP effect, the
asteroid’s pole moves towards the Cassini state 2 or 3, which both shift to-
wards the poles of the ecliptic with the precession constant decreasing with
increasing spin frequency (see, e.g., Eq. (17) in Colombo 1966). For non-zero
inclination of the heliocentric orbit (ih), the asteroid’s pole oscillates around
the obliquity equal to ih or (180

◦−ih), though YORP alone would work towards
more extreme obliquity values. See Sect. 5 for details and further discussion.

In each simulation, we randomly generated 30000 orbit poles with a chosen
distribution in |sinBp| or |cos ǫ|. For each pole and each of the 18 binaries, we
computed whether there occurred mutual events (with relative attenuation
depth ≥ 4%) for the first, discovery apparition epoch. If there occurred an
observable mutual event at the first apparition epoch, which is a requirement
for binary detection with our technique, then this case represents a positive
detection of the binary in the first apparition. 3 For the positive detection, we
then computed whether there occurred an observable event also at the second,
return apparition epoch. A resulted rate of occurrence of positive re-detections
in the return apparition for each of the 18 binaries was recorded. Results of the
simulations for the assumed isotropic distribution of binary orbit poles (the
null hypothesis) and for one of the tested anisotropic distributions, namely
the uniform distribution in |cos ǫ| from sin 60◦ to 1, are shown in Table 3.
There, n1stapp is a number of positive detections of the binary for the 30000
random orbit pole generations, n2ndapp is a number of positive re-detections of
the n1stapp binaries detected in the first apparition, and the probability of a
positive re-detection is given in the next column. 4 The median probability of
positive re-detection for the 18 binaries is ∼ 0.30 for the isotropic distribution.

A correspondence of the results from the numerical model with the analytical
theory for the special case presented in Section 2 is illustrated in Fig. 22
where we plot relative frequencies of the initial positive detections (the data
in the n1stapp column in Table 3) for the assumed isotropic distribution, cf.
with Fig. 1. Note that the numerical model accounts also for non-zero solar
phase of the observations as well as for the pres function, these effects modify
the pme function.

3 Here we assume that the probability pcov of covering the mutual event with ob-
servations in the discovery apparition is independent of the orbit pole orientation.
In fact it is not exactly so, as for non-central events, the event duration is shorter
than for central ones, thus there may be a slight dependence of pcov on orbit pole
position. We neglect this minor effect in our simulations.
4 For most of the binaries, the computed probability of a positive re-detection in
the return apparition was in a range from 0.17 to 0.41 for the assumed isotropic
distribution of binary orbit poles. Two of them, (2577) Litva and (5477) Holmes
had, however, a higher probability of positive re-detection (0.74 and 0.80). This
was because the return apparitions of the two binaries happened to be placed ap-
proximately diametrically opposite in their heliocentric orbits with respect to the
discovery apparition, resulting in the enhanced probability of re-detection.
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After completing the simulation with the 30000 random generations for a
given test distribution of orbit poles, we then used the resulted probabilities
of positive re-detections and computed a probability density of getting N2app

positive re-detections of the 18 studied binaries. The probability density was
computed by random generating positive/negative detections for the 18 bi-
naries with the estimated individual probabilities (n2ndapp/n1stapp), repeated
10000 times. Relative frequencies of getting N2app positive re-detections of the
18 cases in the 10000 random generations were plotted in a histogram and the
resulted probability density of positive re-detections was then compared to
the observed number of 15 of the 18 binaries actually showing mutual events
in their return apparitions.

The null hypothesis of the isotropic distribution of binary orbit poles (Bx =
0, ǫx = 90◦) is rejected at a high confidence level. The simulation gave that
an expected number of positive re-detections was 6 ± 3 (the 95% probability
interval) and a probability of getting 15 positive re-detections among the 18
studied binaries was < 10−4 (see Fig. 23).

The high observed number of positive re-detections indicates that there is
a lack of binary orbit poles at low ecliptic latitudes (at obliquities around
90◦) and that they concentrate at high ecliptic latitudes. To estimate how
large is the concentration of orbit poles towards the poles of the ecliptic or,
alternatively, towards the poles of current binary heliocentric orbits, we run
the simulations for several trial distributions with poles distributed uniformly
in the range |sinBp| = sinBx to 1, and |cos ǫ| = cos ǫx to 1.

For Bx as well as (90◦ − ǫx) ≤ 30◦ , a probability of getting ≥ 15 positive
re-detections of the 18 binaries remains low, < 10−3. The probability becomes
noticeable for the cutoff latitude/co-obliquity values greater than ∼ 45◦, see
Figs. 24 to 27 where we present the resulted probability density distributions
for Bx and (90◦−ǫx) = 45◦, 53◦, 60◦, and 70◦. For the test distribution concen-
trated towards the ecliptic poles, the probability is estimated to be 1%, 4%,
and 9% for the distribution cut at Bx = 53◦, 60◦, and 70◦, respectively. For the
alternative distribution of binary poles concentrated towards the heliocentric
orbit poles, the probability is estimated to be 1%, 7%, and > 15% for the
distribution cut at (90◦ − ǫx) = 45◦, 53◦,≥ 60◦, respectively.

The simulations suggest that binary orbit poles concentrate within ∼ 30◦

of the ecliptic poles, or alternatively, within ∼ 40◦ of the heliocentric orbit
poles. They do not distinguish which one of the two hypotheses —binary
poles concentration in ecliptic latitude vs concentration in obliquity— is valid;
a theoretical study of this problem is given in Sect. 5. We point out that the
trial pole distributions with a step function at given ecliptic latitude or co-
obliquity are arbitrary and that an actual distribution of binary orbit poles
may be more gradual. In any case, the conslusions reached above from the
re-detection statistics support our estimates/constraints for individual pole
orientations in Sect. 3 that indeed concentrate within 30◦ of the ecliptic poles.

15



5 Interpretation and Discussion

Binary systems among small asteroids (primary diameters D1 . 10 km) ap-
pear to form from parent bodies spinning at a critical rate by some sort of fis-
sion or mass shedding process (Scheeres 2007, Pravec and Harris 2007, Walsh
et al. 2008, Jacobson and Scheeres 2011). A mechanism to spin the parent
asteroid up to its critical rotation frequency is provided by the Yarkovsky-
O’Keefe-Radzievskii-Paddack (YORP) effect (e.g., Bottke et al. 2006). While
spinning it up, the YORP effect also changes the asteroid’s spin orientation
toward a YORP end state (see, e.g., Čapek and Vokrouhlický 2004). Thus, by
reaching the critical spin frequency the parent bodies may get an anisotropic
distribution of spin orientations with poles concentrating near the YORP
asymptotic states. This is supported by analysis of distribution of pole ori-
entation for single asteroids in the main belt with sizes ≤ 30 km, appropriate
for parent bodies of our binary systems (e.g., Hanuš et al. 2011). After the
formation of a binary, the primary component may experience a further evolu-
tion by YORP, again toward a YORP endstate. Additionally, life of a binary
asteroid may be troubled by instability due to perturbations from mutual
gravitational effects 5 and those from the solar tidal field.

We consider three hypotheses for origin of the anisotropic distribution of bi-
nary orbit poles:

(1) The preferentially up/down-right orientation of binary orbit poles is set
up upon their formation, i.e., it reflects orientations of spin vectors of
their parent bodies with poles evolved toward the YORP asymptotic
states near 0◦ and 180◦.

(2) Binaries formed with a broader distribution of orbit poles but later they
were YORP-tilted towards the YORP asymptotic states on a long time-
scale.

(3) Binaries with poles close to the ecliptic plane were eliminated due to
instability triggered by some dynamical process(es).

In Section 5.1 below we examine a short-term dynamical evolution of binary
asteroids using a simple numerical model, showing that it does not support
the hypothesis (3) above. In Section 5.2 we then briefly discuss the hypotheses
(1) and (2), but a thorough model of the long-term evolution of the binary
systems is left for a future work.

5 This applies for very compact systems. Main-belt binaries analysed in this paper
have components distant enough that their mutual gravitational effects should not
be able to produce major instability.
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5.1 Short-term dynamical evolution of binary systems in our sample

5.1.1 General considerations

At the first sight, the reported situation is reminiscent of irregular satellites of
giant planets, whose inclination relative to the ecliptic plane also avoids values
around the polar orbit. In that case, the solar-tide perturbation has been
found to drive large oscillations of the satellite eccentricity and inclination
in the non-populated inclination region, the process generally known as the
Kozai dynamics (e.g. Kozai 1962, Carruba et al. 2002, Nesvorný et al. 2003).
Eventually, the pericenter distance would have been too small and impacts on
regular satellites of the planet would occur.

Here, however, the situation is different and the observed satellites in the bi-
nary systems are analogs of the regular, rather than irregular, satellites of
giant planets. This is because of their close proximity to the primary. Assum-
ing reasonable flattening of the latter, in quantitative terms γ = c1/a1 ≤ 0.97
where c1 and a1 are polar and mean equatorial radii of the dynamically equiv-
alent ellipsoid (i.e., ellipsoid with the same moments of inertia) of the primary
(see Appendix), the Laplace plane of the satellite motion tilts from the ecliptic
to the equatorial plane of the primary for distances smaller than several tens
of primary radii 6 (e.g., Goldreich 1965, Mignard 1981). This means that the
quadrupole perturbation due to the primary oblateness dominates the solar-
tide effect. In particular, it drives fast pericenter circulation which effectively
inhibits the Kozai mechanism. 7 As a result the whole binary system acts as a
single gyroscope on a heliocentric orbit. The latitude variations of its angular
momentum may still be non-trivial, due to interaction with the precession of
the heliocentric orbit of the binary, but overall no major dynamical instability
at low ecliptic latitudes is expected.

5.1.2 Simple numerical model

In order to verify the picture outlined in the previous paragraphs, we con-
structed a simple numerical model that tracks orbital evolution of the satellite
and the spin of the primary. The assumptions make the model valid only over
a short timespan of ≃ My, but it still provides a basic tool to verify binary
orbital pole stability at low ecliptic latitudes; note that the Kozai instability
timescale is much shorter, several thousands of years only. Formulation and
basic features of the model are given in the Appendix. In what follows we
provide three different examples of a short-term orbital evolution for binaries

6 The distance from the primary at which solar-tide effects take over the primary
oblateness effect can be estimated by d2 ≃ [2 (C−A) a3h/m0]

1/5, where A and C are
equatorial and polar moments of inertia of the primary, ah is the semimajor axis of
the binary’s heliocentric orbit and m0 the solar mass.
7 Frozen orbits with dω/dt = 0 at critical inclination with respect to the primary’s
equatorial plane (e.g., Breiter and Elipe 2006) are not considered in this paper.
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from our observed sample.

Low-inclination, main belt binary: (4029) Bridges. First, we choose the
case of (4029) Bridges residing on low-inclination, main belt heliocentric orbit.
Because it is located outside the 3/1 mean motion resonance with Jupiter, the
proper frequency of nodal precession of its heliocentric orbit is rather large,
s ≃ −51.8 arcsec/yr, while the proper inclination is only moderate ≃ 5.9◦. Its
contribution is well separated from the forced term at s6 ≃ −26.3 arcsec/yr
frequency and only ≃ 1◦ amplitude in the Fourier spectrum of the non-singular
inclination vector ζ = q + ıp = sin I/2 exp(ıΩ) of the heliocentric orbit.

Figure 28 shows a sample of binary orbit pole evolutions for various initial
latitudes and longitudes equal to Ω+90◦ (left panel) and Ω+270◦ (right panel);
Ω is the longitude of ascending node of the heliocentric orbit. Additionally,
the evolution shown by the thick curve on the left panel corresponds to the
initial pole position (Lp, Bp) = (305◦,−85◦) very close to the osculating pole
of the heliocentric orbit and near the center of the uncertainty region of the
solution (Fig. 16). For any initial latitude value the evolution is very stable,
showing only very small oscillations driven by solar torque on the system
and small heliocentric orbit inclination with respect to the ecliptic. This is
because the effective precession constant of the system, see Eq. (11) below, is
≃ 20 arcsec/yr, well separated from both s and s6 terms in ζ .

High-inclination, Hungaria binary: (1453) Fennia. Next, we consider
the case of Hungaria-type binary (1453) Fennia, residing on high-inclination
heliocentric orbit. In this case the spectrum of ζ is dominated by the proper
term with frequency s ≃ −20.4 arcsec/yr and proper inclination of ≃ 24.4◦,
but there are more planetary terms with similar frequencies. Of particular
interest may be the s4 ≃ −17.8 arcsec/yr with forced inclination ≃ 0.4◦ and
the s6 ≃ −26.3 arcsec/yr with forced inclination ≃ 0.2◦.

Figure 29 shows the same numerical experiment as above for (4029) Bridges,
notably a short numerical integration of the Fennia system with different initial
latitude values of its orbit pole. The thick curve on the left panel shows a
possible evolution of the orbit pole for this binary for initial position (Lp, Bp) =
(95◦,−66◦) very close to the osculating pole of the heliocentric orbit and near
the center of the uncertainty region of our solution (Table 1 and Fig. 4).
Here we see a much different picture, with individual tracks of the orbit pole
showing large oscillations, especially for positive latitude value (prograde sense
of binary motion). Since these oscillations are significantly larger than the
proper inclination value of the heliocentric orbit, the situation warrants a
closer analysis.

Our results obviously confirm that: (i) the primary’s oblateness efficiently locks
the satellite orbit to its equatorial plane, and (ii) the satellite orbit maintains
to be quasi-circular (with only very small oscillations of the osculating eccen-
tricity value). Henceforth, the Kozai mechanism is inhibited for any initial
value of orbit pole, even if in the ecliptic plane (Bp = 0◦). Rotation of the pri-
mary and revolution of the satellite thus couple together and act as a single

18



gyroscope with the angular momentum composed of the two contributions.
In order to understand the general pattern of its ecliptic-latitude evolution
from Fig. 29, one must determine the appropriate precession constant α of
the system.

For a single asteroid, let us say the primary in the pair with α = αprim, rotating
about the principal axis of the inertia tensor we have

αprim =
3

2

n2
h

ω

C − A

C
, (10)

where nh is the mean motion of the heliocentric revolution, ω is the angular
rotation frequency, C and A are the principal moments of the inertia tensor
about the polar and equatorial axes (e.g., Bertotti et al. 2003). However, the
presence of the satellite modifies the situation. The gravitational torque due to
the Sun now acts both on the primary and the satellite orbit. The precession
constant of the whole binary system αeff thus reads (e.g., Ward 1975, French
et al. 1993)

αeff =
3

2

n2
h

ω

J2 + q

λ+ l
, (11)

where J2 = (C − A)/(m1R
2
1), λ = C/(m1R

2
1), q = m2a

2
orb/(2m1R

2
1) and

l = m2a
2
orbnb/(m1R

2
1ω) (with m1 mass of the primary and R1 its effective

radius, m2 mass of the satellite, aorb semimajor axis of the satellite orbit and
nb is the mean motion of the binary components revolution about their center
of mass; see Appendix for more details). Here, respectively, q is the effective
contribution of the satellite orbit to the dynamical flattening measured by the
quadrupole coefficient J2, and l is the orbital angular momentum of the satel-
lite relative to the rotational angular momentum of the primary. We note that
l is typically a small contribution to λ in the denominator of Eq. (11), meaning
most of the angular momentum is in the rotation of the primary. On the con-
trary, unless very large oblateness of the primary, q dominates contribution of
J2 in the numerator of Eq. (11). In conclusion, the precession constant of the
binary system is larger than that of solitary primary as a result of the satellite
presence. For (1453) Fennia, for instance, we would have αprim ≃ 14.9 arc-
sec/yr for the primary only (assuming oblateness γ = c1/a1 = 0.89, cf. Ap-
pendix), but the true value according to Eq. (11) with data in Table 1 is
αeff ≃ 85 arcsec/yr. This is a much larger frequency, which has subtle im-
plications. For instance, the primary’s precession constant would imply only
two proper-frequency Cassini states 8 at high latitudes. However, the true sys-
tem with larger αeff value has four proper-frequency Cassini states, with the
Cassini state 2 at only ≃ 36◦ latitude (Fig. 29, left panel). Also the newly
bifurcated Cassini state 1 is at ≃ 58◦ latitude and longitude offset by 270◦

from the longitude of ascending node of Fennia’s heliocentric orbit (Fig. 29,

8 Detailed discussion of the Colombo top model and Cassini states can be found in
Colombo (1966), Henrard and Murigande (1987) or Vokrouhlický et al. (2006).
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right panel). Orbit pole evolution may oscillate about these states with large
amplitude. The solutions for initially retrograde poles show a much more reg-
ular evolution with the amplitude of latitude oscillations basically given by
the inclination of the binary’s heliocentric orbit.

High-inclination, main belt binary: (2044) Wirt. Finally, we consider
the case of (2044) Wirt, residing on high-inclination orbit with semimajor axis
value in the inner part of the main belt. In fact, with its mean perihelion at
≃ 1.65 AU only (and osculating value reaching down to ≃ 1.42 AU), this
asteroid is on an escaping route to the planet crossing zone. The spectrum
of ζ is dominated by the proper-frequency term with s ≃ −43.3 arcsec/yr
and about ∼ 23.5◦ proper inclination amplitude, but it also contains a large
number of contributions from the forced planetary frequencies and their linear
combinations with s (all having amplitudes of ≃ 2.2◦ and smaller).

Figure 30 shows again a sample of possible pole evolutions with different initial
orientations, including those that start near the middle of our two solutions
from Table 1 and Fig. 8 (shown as thick curves). The general behavior of the
solutions can again be understood in terms of a modification of precession con-
stant due to the satellite: assuming a polar oblateness γ = c1/a1 = 0.75 of the
primary, we would have αprim ≃ 13.3 arcsec/yr that becomes αeff ≃ 33.7 arc-
sec/yr with the satellite (for smaller oblateness values, larger γ, both αprim and
αeff are smaller, but the gross results are not changed unless γ > 0.9). The
αeff value is large enough to significantly displace Cassini state 2, especially
since (2044) Wirt has a high inclination of the heliocentric orbit, to ≃ 46◦ dis-
tance from the heliocentric orbit pole. This puts the Cassini state 2 at ≃ 67◦

ecliptic latitude, right in the zone of our prograde solution for this system (see
the thick curve on the left panel of Fig. 30). An exact location at the Cassini
state 2 would also require 180◦ longitude difference between the pole of the he-
liocentric orbit and the binary pole; we find that our prograde solution is only
∼ 40◦ away, implying a small amplitude circulation about the Cassini state 2.
Smaller polar oblateness values for the primary would displace the Cassini
state 2 to slightly higher ecliptic latitude value and would imply larger am-
plitude oscillation of the orbit pole of (2044) Wirt. The high-inclination and
high-eccentricity state of the Wirt heliocentric orbit, with occasional crossing
of the Mars orbit, makes the behavior of ζ only quasi-periodic. Its truncated
Fourier representation is only approximate and includes unusual prograde pre-
cessing terms which produce long-period variations in the pole latitude of our
solutions near Bp ≃ −50◦.

We conclude that while the examples of Hungaria-type binary, (1453) Fennia,
and Phocaea-type binary, (2044) Wirt, above show that latitude of the orbit
pole may have non-trivial evolution, they do not provide evidence for larger
stability at high latitudes versus low latitudes. On the contrary: if we were
to run orbit pole evolutions for denser and initially isotropic distribution, we
would obtain a homogeneous occupation of any latitude (in cosBp measure)
over a time. This experiment has been performed by Vokrouhlický et al. (2006)
for single asteroids, but as we proved that the compact binaries effectively be-
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have like single objects with only modified precession constant, it applies also
here. We thus conclude, that for the observed parameters of the binary sys-
tems, their dynamics is stable over a My timescale even for very small ecliptic
latitudes of the orbital pole. Assuming an initially isotropic distribution of
poles, it should remain an isotropic distribution at any moment of time.

While the pole stability at all latitudes is true population-wise, we return to
the issue of possibly complicated latitude tracks of individual objects with
very large oscillations in the prograde zone. This especially applies to binaries
which have large inclination value of their heliocentric orbit with respect to the
ecliptic; notable examples are Hungaria and Phocaea groups (see Vokrouhlický
et al. 2006). In these cases, the latitude value of the current orbit pole position
of the binary may not directly reflect its initial value. Only a more detailed
information about the system, such as a constraint on the polar flattening of
the primary, would provide more insight in the possible evolutionary tracks of
the pole.

5.2 Long-term dynamical evolution: hints and guesses

Our numerical model provides an information about the observed binary sys-
tems over a timescale which might be only a snapshot in their lifetime. While,
the observed (tidal) synchronization of the satellite’s rotation implies ages
longer than ∼ (1−10) My (e.g., Taylor and Margot 2010, 2011), we have only
a loose handle of the upper age limit. The collisional lifetime of the km-size
satellites suggests that most of the binary systems in our sample are not older
than ∼ (200 − 500) My (e.g., Bottke et al. 2005) and a similar, or longer,
timescale is obtained by non-synchronization of the rotation rate of the pri-
mary. This is a long time, over which weak torques like the YORP effect might
act on the systems. For instance, distribution of the spin orientations of sin-
gle asteroids is skewed toward the ecliptic poles in a good agreement with a
steady-state model with the YORP effect (e.g., Hanuš et al. 2011). In the same
way, YORP acting on the primary component should slowly tilt the system
toward the asymptotic YORP states, presumably at large ecliptic latitudes.

Using data in Čapek and Vokrouhlický (2004) we find that near-critically
rotating ≃ 8 km asteroid in the inner part of the main belt should tilt its pole
position by ≃ 10◦ per 100 My on average. Because of the ∝ 1/D2 scaling of
the YORP strength, a smaller body of ≃ 4 km size would have an average
polar tilt of ≃ 40◦ per 100 My. Thus, if binary systems are typically old (ages
& 100 My), their poles might have been further evolved towards the YORP
asymptotic states during their lifetime.

However, if the binary systems were systematically younger than inferred
above from tidal evolution timescales, for instance because of their fast evolu-
tion due to the BYORP effect (e.g., Čuk and Burns 2004, Ćuk and Nesvorný
2010, McMahon and Scheeres 2010), the weak YORP torques on the primary
would not have enough time to tilt the system orbital plane. In that case,
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the concentration of binary orbit poles on high ecliptic latitudes would reflect
primarily their preferential formation at these states (the hypothesis 1 above).
As mentioned in the first paragraph of this section, during the YORP spin-up
of parent bodies to the critical fission frequency, their spin orientations should
be substantially YORP-tilted toward the YORP asymptotic states.

At this moment, the observations cannot discriminate between the two pos-
sibilities. More data and detailed theoretical understanding of the long-term
binary evolution processes are needed to resolve this interesting issue.
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APPENDIX

A Numerical model of binary’s short-term evolution

In order to verify our conclusions in Sect. 5 we constructed a very simple nu-
merical model to track orbital evolution of the binary system coupled with
the spin evolution of the primary. The major simplifying assumptions are
(i) a point-mass representation of the secondary component (the satellite),
and (ii) an axisymmetric representation of the primary component of the bi-
nary system. Masses of the primary and secondary components are denoted
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m1 and m2; we also define dimensionless factors X1 = m1/(m1 + m2) and
X2 = m2/(m1 + m2), which correspond to their respective contributions to
the total mass of the binary system. 9 The primary is assumed to be an oblate
spheroid 10 with the equatorial and polar axes denoted by a1 and c1, such
that γ = c1/a1 ≤ 1. Denoting R1 ≃ a1γ

1/3 the characteristic radius of the
primary, defined as a radius of a sphere with the same volume, and using R1

as the scaling parameter of the representation of primary’s gravitational field,
we have J2 ≃ 0.2 (1− γ2) γ−2/3 for its quadrupole parameter. We could also
determine similar formulas for higher-degree zonal coefficients, but we shall
not need them. Description of the evolution of the primary’s spin axis also
requires (C − A)/C ≃ 0.5 (1− γ2), where C and A are polar and equatorial
moments of inertia. Photometric observations of the primary components in
binaries, including those in this paper, all suggest a small amplitude of the
lightcurve from which we may estimate the ratio of the equatorial axis is unity
within ≃ 10− 20% accuracy. Radar observations also support this conclusion
and additionally suggest only modest polar flattening with γ ≃ 0.8−0.9 (e.g.,
Ostro et al. 2006, Shepard et al. 2006, Taylor et al. 2008, Benner et al. 2010).
The mutual gravitational interaction of the primary and secondary compo-
nents is represented in our model to the quadrupole level of the primary’s
zonal field; while we could have taken higher-degree zonal terms into account,
they would not bring new qualitative features in our analysis.

On the contrary, we need to take into account effects of the solar gravity
for the binary dynamics. We use description in Jacobi coordinates, where r
denotes relative position vector of the secondary with respect to the primary
and R denotes relative position vector of the Sun with respect to the center
of mass of the binary. Since our prime concern is the evolution of r, and the
relative velocity dr/dt, we represent R with a simple elliptic orbit. Because the
secular evolution of the binary orbit plane may be coupled to the corresponding
secular evolution of the heliocentric orbit plane of the binary’s center-of-mass
motion, we only pay attention to represent the inclination I and longitude of
ascending node Ω evolutionary effects in R accurately enough. In particular,
we use a Fourier representation of the non-singular inclination vector ζ =
q + ıp = sin I/2 exp(ıΩ), in which we retain the two dominant terms: the
proper term with frequency s and the forced terms with frequency s6 (see,
e.g., Vokrouhlický et al. 2006). In the case of binaries on high-inclination
heliocentric orbits, such as those in the Hungaria or Phocaea groups, it is
necessary to include also additional forced terms due to the terrestrial planets
such as s3 and s4, because they are more important than the s6 term and their
frequencies are close to s (e.g., Milani et al. 2010). All these harmonic terms
were obtained by numerically integrating the heliocentric orbit of the binary
over 10 My time interval, and Fourier analysing of the osculating ζ = q + ıp
values.

9 Masses of both components were computed from the estimated sizes in Table 1
and a bulk density of 2.5 g/cm3.
10 The exact nature of the shape is, however, not a very restrictive assumption. As
mentioned above, the major approximation in our model is the axial symmetry of
the primary.
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With these assumptions, the relative vector r satisfies
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)

r

]

+
3G (m1 +m2)

2 r5

(

R1

r

)2

J2

{[

5 (r · s)2 − r2
]

r− 2r2 (r · s) s
}

,(A.1)

where m0 is the solar mass, ∆2
10 = R2 + 2X2 (r ·R) +X2

2r
2 and ∆2

20 = R2 −
2X1 (r ·R) + X2

1r
2 are mutual distances of the primary and the secondary

components in the binary to the Sun, and s is the direction of the spin vector
of primary. The latter evolves due to gravitational torques exerted by the
satellite and the Sun, and we have

ds

dt
=

3Gm2

r5ω

C − A

C
(r · s) (r× s) +

3Gm0

R5ω

C −A

C
(R · s) (R× s) , (A.2)

where ω is the angular rotation frequency of the primary (constant in our
model). Here, the first term is the satellite’s torque and the second term is
the Sun’s torque. Because r ≪ R, the satellite’s term “nominally dominates”,
but if the satellite is very close to the primary’s equator the solar term also
contributes. Obviously, for a spherical primary (γ = 1 and thus (C−A)/C = 0)
the spin s is fixed and the relative orbit of the binary evolves as in the point-
mass problem.

Equations (A.1) and (A.2) are numerically propagated using a Burlish-Stoer
scheme with variable timestep complying to a chosen accuracy level (e.g., Press
et al. 2007). Therefore, our characteristic timestep is typically a fraction of
hour. The initial data for (r, dr/dt, s) correspond to a near-circular orbit in the
equatorial plane of the primary (thus s ‖ r×dr/dt; for sake of simplicity we did
not explore solutions with the satellite orbit inclined to the primary’s equator).
Its semimajor axis aorb is determined by the observed orbital period Porb in
Table 1. The initial orientation of the primary spin axis s is either determined
by the orbital pole from Table 1, or we run a sample of simulations with several
initial latitudes in order to test short-term stability of the solution: Bp = 0◦,
Bp = ±20◦, Bp = ±40◦, Bp = ±60◦ and Bp = ±80◦. We still have to select
the initial ecliptic longitude Lp of s: given the possible circulation of s about
the Cassini states related to the precessing orbit, we choose Lp,1 = Ω+90◦ and
Lp,2 = Ω + 270◦. Intermediate values of Lp would lead to solutions that are
represented as a composition of the chosen cases. For definiteness, we choose
the primary geometrical oblateness γ = 0.89, which is the value determined
for the best studied binary case of (66391) 1999 KW4 (Ostro et al. 2006);
however, our results and conclusions are not overly sensitive to this value.
Our model is only adequate to describe the binary evolution over a moderate
timescale, but is fundamentally incomplete to represent a long-term evolution.
For that reason we set the maximum time of integration to 500 ky. Obviously,
we also stop the simulation when the distance r of the primary and secondary
components would become: (i) smaller than sum of their radii (estimated in
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Table 1), or (ii) larger than the estimated Hill radius of their gravitational
interaction (typically few hundreds of primary radii).

As demonstrated in Sect. 5, the oblateness of the primary efficiently couples
the evolution of its spin axis s and the binary orbital angular momentum
(m1 + m2)X1X2 r × (dr/dt) for compact systems (i.e., when r ≪ d2 from
footnote 4). In this situation, the orbit pole evolution may be obtained by
numerical integration of a much simpler system

ds′

dt
= − [αeff (n · s′)n+ σ]× s′ , (A.3)

where s′ is the primary and orbit pole referred to the system of axes pre-
cessing with the binary’s heliocentric orbit, such that the x-axis is rotated in
the osculating plane by −Ω from the ascending node and the z-axis is along
the osculating normal n to the heliocentric orbital plane, αeff is the effective
precession constant from Eq. (11) and σ = (σ1, σ2,−2σ3)

T , with

σ1 =cosΩ (dI/dt)− sin I sinΩ (dΩ/dt) , (A.4)

σ2 =sinΩ (dI/dt) + sin I cosΩ (dΩ/dt) , (A.5)

σ3 =sin2 I/2 (dΩ/dt) . (A.6)

Here, I and Ω are the osculating values of inclination and longitude of as-
cending node of the binary heliocentric orbit, and dI/dt and dΩ/dt are their
rates induced by planetary perturbations. Not only the system (A.3) is much
simpler than Eqs. (A.1) and (A.2), but most importantly it eliminates orbital
motion of the binary. As a result, the shortest timescale involved is that of
secular evolution of the binary’s heliocentric orbit and consequently one can
take a much longer integration timestep. Additionally, an efficient Lie-Poisson
integration scheme is available for this system (e.g., Breiter et al. 2005), which
optimizes the integrator speed. Therefore a sample of binary’s orbit-pole evo-
lution can be efficiently obtained by integration of (A.3). The scheme may
even contain a slow, adiabatic, evolution of the binary orbit induced by tides
or BYORP effects (e.g., Taylor and Margot 2010, 2011, Ćuk and Burns 2004,
Ćuk and Nesvorný 2010, McMahon and Scheeres 2010). In this case the preces-
sion constant αeff would slowly evolve, reflecting slow changes in the satellite
orbit.
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Table 1: Parameters of 18 binary asteroids observed in more than one apparition

Binary system Apparitions D1(km) D2/D1 P1(h) Porb(h) P2(h) aorb/D1 Lp (◦) Bp (◦) ǫ (◦) (a1/c1)max emax ah(AU) ih(
◦)

(1338) Duponta 07, 10 7.4 0.24 3.85453 17.5680 (17.57) 2.0 0 - 360 +66 - +90 0 - 21 3.3a 0.14 (07) 2.264 4.82

±.02 ±.00009 ±.0001 ±.01

(1453) Fennia 07, 09, 11 7.0 0.28 4.4121 23.00351 2.6 89 - 118 −70 - −62 172 - 180 2.4b 0.03 (11) 1.897 23.68

±.02 ±.0003 ±.00005

(1830) Pogson 07, 08, 10 7.8 (0.30) 2.57003 24.24580 (2.5) 130 - 274 −86 - −74 162 - 180 3.4c 0.10 (08) 2.188 3.95

±.02 ±.00006 ±.00006

(2006) Polonskaya 05, 08, 10 5.5 (0.23) 3.1180 19.153d (2.1) 2.325 4.92

±.03 ±.0001

(2044) Wirt 05/06, 08, 10e 5.6 0.25 3.6897 18.976 (18.97) 2.1 349 - 23 −72 - −52 120 - 143f 1.5 0.10 (05) 2.380 23.98

±.02 ±.0003 ±.005 ±.02

(2 pole solutions) 18.965 168 - 203 +58 - +72 37 - 53

±.006

(2577) Litva 09, 10 4.0 (0.34) 2.81292 35.8723 (3.2) 253 - 348 −84 - −68 158 - 178 2.3 0.08 (09) 1.904 22.91

±.02 ±.00009 ±.0008

(2754) Efimov 06, 08, 11 4.9 0.22 2.44967 14.77578 1.8 0 - 360 −90 - −66 154 - 180 1.8a 0.08 (06) 2.228 5.71

±.02 ±.00002 ±.00008

(3309) Brorfelde 05, 09, 10 4.7 0.26 2.5042 18.46444 18.45 2.0 116 - 154 −74 - −64 168 - 180 2.1c 0.08 (10) 1.817 21.14

±.02 ±.0002 ±.00003 ±.02

(3868) Mendoza 09, 10 8.3 0.17 2.77089 12.1944 1.5 2.333 8.10

±.02 ±.00005 ±.00008

(4029) Bridges 06, 07, 10 7.7 0.27 3.5750 16.31701 1.9 0 - 360 −90 - −62 157 - 180 3.5 0.17 (06) 2.525 5.44

±.03 ±.0004 ±.00004

(5477) Holmes 05, 07 2.9 0.39 2.9940 24.4036 (24.41) 2.5 320 - 332 +38 - +64g 5 - 30g 2.0h 0.05 (05) 1.917 22.55

±.02 ±.0002 ±.0002 ±.01

(5905) Johnson 05, 08 3.6 0.38 3.7823 21.75639 2.3 30 - 58 +60 - +76 0 - 14 2.3 0.13 (05) 1.910 27.52

±.02 ±.0002 ±.00006

(2 pole solutions) 21.79699 210 - 254 −56 - −76 167 - 180

±.00009

(6084) Bascom 05/06, 08i 5.8 0.37 2.7453 43.51 (43.5) 3.7 267 - 378 −76 - −56 127 - 169 2.9 0.15 (06) 2.313 23.01

±.02 ±.0002 ±.02 ±.1

(6244) Okamoto 06, 09 4.4 0.25 2.8957 20.3105 2.2 0 - 360 +54 - +90j 0 - 33j 3.0k 0.15 (06) 2.160 5.40

±.02 ±.0003 ±.0002

(2 pole solutions) 20.3232 0 - 360 −90 - −58l 151 - 180l

±.0002

(6265) 1985 TW3 07, 10 5.2 (0.32) 2.7092 15.86m 1.9 2.166 4.11

±.02 ±.0001

(9617) Grahamchapman 06, 08 2.8 (0.27) 2.28561 19.3817 2.1 0 - 360 +48 - +90n 0 - 38n 2.4k 0.19 (06) 2.224 6.14

±.03 ±.00006 ±.0004

(2 pole solutions) 19.3915 0 - 360 −90 - −50p 141 - 180p

±.0004
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Table 1: cont.

Binary system Apparitions D1(km) D2/D1 P1(h) Porb(h) P2(h) aorb/D1 Lp (◦) Bp (◦) ǫ (◦) (a1/c1)max emax ah(AU) ih(
◦)

(17260) 2000 JQ58 06, 09 3.2 0.26 3.1287 14.7577 14.745 1.8 0 - 360 −90 - −56q 147 - 180q 2.2 0.20 (06) 2.204 5.28

±.03 ±.0001 ±.0002 ±.003

(2 pole solutions) 14.7523 0 - 360 +46 - +90r 0 - 43r

±.0003

(76818) 2000 RG79 05, 08/09 2.8 (0.35) 3.1665 14.11960 14.127 1.7 28 - 360 +72 - +90 0 - 22 1.7k 0.13 (08) 1.930 18.13

±0.02 ±.0002 ±.00007 ±.002

(2 pole solutions) 14.12998 0 - 360 −90 - −70 158 - 180

±.00005
The listed parameters are: the mean diameter of the primary at the equatorial aspect (D1), estimated from the measured absolute magnitude (H) at the system’s mean light and an assumed
geometric albedo based on family or orbital group membership according to Warner et al. (2009b) or, in the case of 1453 Fennia, estimated in Tedesco et al. (2002), using the method in Pravec
and Harris (2007); the ratio between the mean diameters of the components of the binary (D2/D1); the rotation period of the primary (P1); the orbit period (Porb), the rotation period of the
secondary (P2); the relative size of the mutual orbit’s semi-major axis (aorb/D1); ranges of admissible values of the mutual orbit pole’s ecliptic longitude, latitude, and obliquity to the current
heliocentric orbit (Lp, Bp, ǫ); the upper limit on the equatorial-to-polar axis ratio of the primary; the upper limit on eccentricity of the mutual orbit, estimated from the apparition specified in
parentheses; the semi-major axis (ah) and inclination (ih) of the system’s heliocentric orbit (epoch 2011 Aug. 27.0 TT).
See the electronic files available at http://www.asu.cas.cz/∼asteroid/binastdata.htm for references, comments, additional estimated parameters, and uncertainties.
Values in parentheses have following meanings: the estimated size ratios D2/D1 may be only lower limits, as the assumption of that we observed total events or that a possible third component
has a negligible size may not hold; the secondary period (P2) solutions are likely but not entirely unique; and the estimates of the relative semi-major axis aorb/D1 may be affected by presence
of the possible third component.
a The best-fit value is 1.1, and the quality of the fit decreases with increasing a1/c1, so the lower values are preferred.
b Lower limit on a1/c1 is 1.4.
c The best-fit value is 1.3, and the quality of the fit decreases with increasing a1/c1, so the lower values are preferred.
d There are five discrete solutions, see text.
e Mutual events were observed in the first apparition only. In the two return apparitions, there did not occur mutual events with depth greater than 0.03 mag. We modeled the orbital lightcurve
component from the first apparition only.
f Quality of the fit decreases with decreasing ǫ, so the higher values are preferred.
g Model bulk density increases from 0.8 to 1.9 g cm−3 with increasing Bp. The most plausible solution is for Bp ∼ +60◦ and ǫ ∼ 8◦ .
h The best-fit value is 1.2, and the quality of the fit decreases with increasing a1/c1, so the lower values are preferred.
i In the return apparition, there did not occur mutual events width depth greater than 0.02 mag. We modeled the orbital lightcurve component from the first apparition only. The lack of mutual
events in the return apparition did not constrain the solution further; for all poles within the area derived from the first apparitions, there do not occur events for the geometry of the return
apparition.
j For model bulk density > 1.0 g cm−3 the values of Bp and ǫ are constrained to be > +64◦ and < 21◦ , respectively.
k The best-fit value is 1.0, and the quality of the fit decreases with increasing a1/c1, so the lower values are preferred.
l For model bulk density > 1.0 g cm−3 the values of Bp and ǫ are constrained to be < −66◦ and > 159◦ , respectively.
m There are four discrete solutions in a range from 15.84 to 15.87 h.
n For model bulk density > 1.0 g cm−3 the values of Bp and ǫ are constrained to be > +62◦ and < 24◦, respectively.
p For model bulk density > 1.0 g cm−3 the values of Bp and ǫ are constrained to be < −62◦ and > 156◦ , respectively.
q For model bulk density > 1.0 g cm−3 the values of Bp and ǫ are constrained to be < −62◦ and > 153◦ , respectively.
r For model bulk density > 1.0 g cm−3 the values of Bp and ǫ are constrained to be > +62◦ and < 27◦, respectively.
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Table 2
Epochs of mutual events in the discovery and the return apparitions for the 18
binaries. The data for the first positive event detection in each apparition are listed.

Binary system Date (UT) L(◦) B(◦) Lh(
◦) Bh(

◦) EventDet

(1338) Duponta 2007-03-06.9 160.1 -2.5 162.7 -1.4 P

(1338) Duponta 2010-01-05.0 82.0 7.2 92.7 3.9 P

(1453) Fennia 2007-11-04.4 76.8 33.9 58.7 18.9 P

(1453) Fennia 2009-08-14.6 293.1 -39.5 309.3 -20.4 P

(1830) Pogson 2007-04-18.6 220.6 6.7 214.8 3.6 P

(1830) Pogson 2010-02-20.7 183.7 2.6 169.3 1.5 P

(2006) Polonskaya 2005-11-01.2 46.9 6.8 42.6 3.3 P

(2006) Polonskaya 2008-06-05.3 294.3 -7.7 278.4 -4.9 N

(2044) Wirt 2005-12-05.9 56.5 13.7 66.8 5.7 P

(2044) Wirt 2008-08-24.3 316.7 -35.5 322.3 -24.0 N

(2577) Litva 2009-03-02.2 132.3 -28.2 149.4 -13.0 P

(2577) Litva 2010-08-11.3 335.4 25.6 327.1 13.8 P

(2754) Efimov 2006-08-14.2 0.9 10.6 339.1 5.1 P

(2754) Efimova 2011-01-31.0 139.2 -6.2 135.8 -3.7 P

(3309) Brorfelde 2005-10-25.2 21.1 -2.5 26.7 -1.2 P

(3309) Brorfelde 2009-01-28.3 147.4 39.6 136.7 20.3 P

(3868) Mendoza 2009-04-25.5 221.4 10.0 218.9 6.0 P

(3868) Mendoza 2010-09-07.0 25.2 -3.6 6.9 -2.1 P

(4029) Bridges 2006-04-11.6 222.3 -0.3 213.0 -0.2 P

(4029) Bridges 2007-10-06.0 356.8 4.6 2.5 2.9 P

(5477) Holmes 2005-11-02.3 47.0 -5.3 43.2 -2.5 P

(5477) Holmes 2007-06-10.5 225.7 -10.7 242.7 -5.6 P

(5905) Johnson 2005-04-01.3 185.4 38.8 188.7 20.9 P

(5905) Johnson 2008-05-13.4 279.3 43.6 254.3 25.6 P

(6084) Bascom 2005-12-29.6 139.5 -18.4 120.5 -10.9 P

(6084) Bascom 2008-09-01.6 351.8 -15.2 345.4 -7.5 N

(6244) Okamoto 2006-09-26.2 2.9 6.2 2.9 2.8 P

(6244) Okamoto 2009-08-14.6 320.3 -2.0 321.1 -1.0 P

(6265) 1985 TW3 2007-07-15.5 297.4 -8.8 294.6 -3.9 P

(6265) 1985 TW3 2010-06-13.6 244.8 -4.0 253.7 -2.0 P

(9617) Grahamchapman 2006-01-27.3 139.3 -6.3 133.4 -3.3 P

(9617) Grahamchapman 2008-12-26.2 63.7 -11.3 78.7 -6.1 P

(17260) 2000 JQ58 2006-01-29.6 148.0 -10.0 138.0 -4.7 P

(17260) 2000 JQ58 2009-01-01.3 65.0 -8.8 82.8 -4.7 P

(76818) 2000 RG79 2005-08-07.3 342.2 21.1 327.9 10.8 P

(76818) 2000 RG79 2008-10-03.4 73.3 28.3 41.3 17.2 P

The ecliptic coordinates are in the equinox of J2000. For definition of positive/negative (P/N) event detec-
tion, see text.
a We observed Efimov in the 2nd apparition of March 2008 when the asteroid was placed almost precisely
(within a few degrees) diametrically opposite in its heliocentric orbit with respect to the discovery appari-
tion. As such, the 2008 apparition’s data would provide negligible constraints in the simulations presented
in Section 4 and therefore we did not count the 2008 apparition as a fully-fledged return apparition for the
purpose of the survey simulations. Instead, we took the 2011 apparition as the return apparition.
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Table 3
Results of the simulations of the binary survey for two assumed distributions of
orbit poles: the isotropic distribution (columns 4–6) and the uniform distribution
in |cos ǫ| from sin 60◦ to 1 (columns 7–9).

isotropic ǫx = 30◦

Binary system sin ic α(◦) n1stapp n2ndapp Prob. (
n2ndapp

n1stapp
) n1stapp n2ndapp Prob. (

n2ndapp

n1stapp
)

(1338) Duponta 0.310 2.8 7617 1286 0.169 17841 9644 0.541

(1453) Fennia 0.246 22.0 9985 2963 0.297 20930 16502 0.788

(1830) Pogson 0.260 6.4 7152 1749 0.245 16554 11168 0.675

(2006) Polonskaya 0.293 5.5 7492 1406 0.188 17767 10562 0.594

(2044) Wirt 0.298 12.9 8913 2212 0.248 21897 15991 0.730

(2577) Litva 0.209 22.0 8988 6620 0.737 18403 18010 0.979

(2754) Efimov 0.339 22.3 10934 4469 0.409 20798 16221 0.780

(3309) Brorfelde 0.315 5.7 8264 2491 0.301 18616 14393 0.773

(3868) Mendoza 0.390 4.7 8983 3494 0.389 20908 15806 0.756

(4029) Bridges 0.334 9.3 9269 2927 0.316 19674 15230 0.774

(5477) Holmes 0.278 4.8 7565 6091 0.805 18499 16036 0.867

(5905) Johnson 0.300 18.1 10208 3826 0.375 23887 20276 0.849

(6084) Bascom 0.185 19.9 7606 1390 0.183 18081 8266 0.457

(6244) Okamoto 0.284 3.4 7073 1567 0.222 17234 10906 0.633

(6265) 1985 TW3 0.347 5.7 9001 2631 0.292 21888 16779 0.767

(9617) Grahamchapman 0.302 6.6 8156 1644 0.202 18691 12142 0.650

(17260) 2000 JQ58 0.350 11.3 10014 2201 0.220 21938 16091 0.733

(76818) 2000 RG79 0.397 17.2 12519 3814 0.305 25207 22198 0.881

Note: In columns 2 and 3, the values of sin ic and the solar phase of the first positive event observation are
listed. A correlation of n1stapp for the isotropic distribution with both sin ic and the solar phase is apparent;
as given in Section 2, the mean probability of the event detection is equal to sin ic (eq. 7) at zero solar
phase, increased at higher solar phases, and further modified by the event resolving probability function
pres (not illustrated here).
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Fig. 1. A dependence of the probability of occurrence of mutual events on the cosine
of obliquity for three values of sin ic for the special case of a binary system with
spherical components, zero eccentricity of the mutual orbit, and observed at zero
solar phase.
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Fig. 2. Area of admissible poles for the mutual orbit of (1338) Duponta in ecliptic
coordinates. The north pole of the current asteroid’s heliocentric orbit is marked
with the cross. This area corresponds to 3σ confidence level.
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Fig. 3. Sample of the orbital lightcurve component’s data of (1338) Duponta in
apparitions 2007 and 2010. The observational data (points) are plotted together
with the synthetic lightcurve for the best-fit solution (curve). The data sets from
different dates are vertically offset for clarity, and different symbols are used for
them to avoid confusion. The epochs of the origins of each curve (JD0) are listed in
the right column. On the first and third curves from the top, the minima are shown
in an order opposite (i.e., first the secondary and then the primary event) to the
other curves.
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Fig. 4. Area of admissible poles for the mutual orbit of (1453) Fennia in ecliptic
coordinates. The south pole of the current asteroid’s heliocentric orbit is marked
with the cross.
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Fig. 5. Same as Fig. 3, but for (1453) Fennia in apparitions 2007, 2009, and 2011.
On the fifth curve from the top, the minima are shown in an order opposite (i.e.,
first the secondary and then the primary event) to the other curves.
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Fig. 6. Area of admissible poles for the mutual orbit of (1830) Pogson in ecliptic
coordinates (light gray). To demonstrate the effect of a possible third body on the
estimated pole, the dark gray area shows the admissible poles constrained using
the effective diameter of the third body set equal to the effective diameter of the
primary. The south pole of the current asteroid’s heliocentric orbit is marked with
the cross.
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Fig. 7. Same as Fig. 3, but for (1830) Pogson in apparitions 2007, 2008, and 2010.
The solid curve denotes the solution assuming a negligible size of the presumed third
body, while the dashed curve is the solution with the third body with diameter equal
to D1.
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Fig. 8. Area of admissible poles for the mutual orbit of (2044) Wirt in ecliptic
coordinates. The north (left) and the south (right) pole of the current asteroid’s
heliocentric orbit are marked with the crosses.
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Fig. 9. Same as Fig. 3, but for (2044) Wirt in apparition 2005. The solid and
dashed curves denote the retrograde and the prograde solutions, respectively. On
the second curve from the top, the minima are shown in an order opposite (i.e., first
the secondary and then the primary event) to the other curves.
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Fig. 10. Area of admissible poles for the mutual orbit of (2577) Litva in ecliptic
coordinates (light gray). To demonstrate the effect of a possible third body on the
estimated pole, the dark gray area shows the admissible poles constrained using
the effective diameter of the third body set equal to the effective diameter of the
primary. The south pole of the current asteroid’s heliocentric orbit is marked with
the cross.
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Fig. 11. Same as Fig. 3, but for (2577) Litva in apparitions 2009 and 2010. The solid
and the dashed curves denotes the solutions without the third body, and with the
third body with diameter equal to D1, respectively. On the third and the last curves
from the top, the minima are shown in an order opposite (i.e., first the secondary
and then the primary event) to the other curves.
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Fig. 12. Area of admissible poles for the mutual orbit of (2754) Efimov in ecliptic
coordinates. The south pole of the current asteroid’s heliocentric orbit is marked
with the cross.
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Fig. 13. Same as Fig. 3, but for (2754) Efimov in apparitions 2006, 2008, and 2011.
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Fig. 14. Area of admissible poles for the mutual orbit of (3309) Brorfelde in ecliptic
coordinates. The south pole of the current asteroid’s heliocentric orbit is marked
with the cross.

46



Fig. 15. Same as Fig. 3, but for (3309) Brorfelde in apparitions 2005, 2009, and
2010. On the third curve from the top, the minima are shown in an order opposite
(i.e., first the secondary and then the primary event) to the other curves.
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Fig. 16. Area of admissible poles for the mutual orbit of (4029) Bridges in ecliptic
coordinates. The south pole of the current asteroid’s heliocentric orbit is marked
with the cross.
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Fig. 17. Same as Fig. 3, but for (4029) Bridges in apparitions 2006, 2007, and 2010.
On the first curve from the top, the minima are shown in an order opposite (i.e.,
first the secondary and then the primary event) to the other curves.
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Fig. 18. Area of admissible poles for the mutual orbit of (5477) Holmes in ecliptic
coordinates. The north pole of the current asteroid’s heliocentric orbit is marked
with the cross.
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Fig. 19. Same as Fig. 3, but for (5477) Holmes in apparitions 2005 a 2007.
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Fig. 20. Area of admissible poles for the mutual orbit of (6084) Bascom in ecliptic
coordinates. The south pole of the current asteroid’s heliocentric orbit is marked
with the cross.
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Fig. 21. Same as Fig. 3, but for (6084) Bascom in apparition 2006.

53



Fig. 22. Relative frequency of the initial positive detections from the survey simu-
lation with the 30000 random pole generations for the 18 binaries for the assumed
isotropic distribution of orbit poles vs the sine of pole ecliptic latitude.
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Fig. 23. Estimated probability density of occurrence of mutual events in the return
apparition in N2app of the 18 binary systems, assuming an isotropic distribution of
orbit poles of binary systems. The observed number (15) is much greater than the
prediction for the null hypothesis.
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Fig. 24. Estimated probability densities of occurrence of mutual events in the return
apparition in N2app of the 18 binary systems, assuming an uniform distribution of
orbit poles of binary systems in |sinBp| (filled bins) and |cos ǫ| (hatched bins) from
sin 45◦ to 1.
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Fig. 25. Same as Fig. 24, but for the cutoff value Bx and (90◦ − ǫx) = 53◦.
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Fig. 26. Same as Fig. 24, but for the cutoff value Bx and (90◦ − ǫx) = 60◦.
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Fig. 27. Same as Fig. 24, but for the cutoff value Bx and (90◦ − ǫx) = 70◦.
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Fig. 28. A sample of evolutionary tracks of the ecliptic latitude (ordinate) of the
orbital pole for (4029) Bridges determined by our numerical model; the abscissa is
time in ky. Initial ecliptic latitudes Bp were 0◦, ±20◦, ±40◦, ±60◦ and ±80◦. Results
on the left panel had initial orbit pole with ecliptic longitude Lp,1 = Ω+ 90◦, while
those on the right panel had Lp,2 = Ω+270◦, where Ω is the longitude of ascending
node of the binary’s heliocentric orbit (cf. Appendix). The gray dashed lines on the
left panel show ecliptic latitudes of the Cassini states 2 (C2) and 3 (C3). The thick
curve on the left panel shows a possible evolution of Bridges’ pole with initial data
(Lp, Bp) = (305◦,−85◦) very close to the osculating pole of the heliocentric orbit
and near the center of the uncertainty region of the solution (Table 1 and Fig. 16).
All orbits are stable, independently of the latitude value, with only small oscillations
due to small value of the heliocentric orbit inclination to the ecliptic.
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Fig. 29. The same as in Fig. 28, but for the Hungaria-class binary (1453) Fennia.
The gray dashed lines now show ecliptic latitude of the Cassini states 1 (C1), 2 (C2)
and 3 (C3). The thick curve shows a possible evolution of the orbit pole for this
binary for initial position (Lp, Bp) = (95◦,−66◦) very close to the osculating pole of
the heliocentric orbit and near the center of the uncertainty region of the solution
(Table 1 and Fig. 4).

Fig. 30. The same as in Fig. 28, but for the Phocaea-class binary (2044) Wirt. The
gray dashed lines now show ecliptic latitude of the Cassini states 2 (C2) and 3 (C3).
The thick curves show a possible evolution of the two solutions of the orbit pole for
this binary (see Table 1 and Fig. 8): initial pole position (Lp, Bp) = (180◦, 67◦) on
the left panel and (Lp, Bp) = (0◦,−65◦) on the right panel.
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