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Abstract

Evidence is mounting that asteroids larger than a few hundred metres in diame-
ter are gravitational aggregates of smaller, cohesive pieces. For example, images of
25143 itokawa show a boulder-strewn surface reminiscent of what might be expected
following gravitational reaccumulation of material ejected from a catastrophic im-
pact into a larger body. We have developed a new numerical approach to modeling
gravitational aggregates that includes for the first time several prescriptions for
variable material strength/cohesion while preserving the desirable features of fast
and accurate computation from our prior methods. The new model can be used
to construct non-idealized rubble piles made up of irregular, competent pieces, or
to speed up high-resolution asteroid family formation simulations by allowing reac-
cumulating fragments to stick on contact (and optionally bounce or cause further
fragmentation, depending on user-selectable parameters). We detail the numerical
method, which involves solving the rigid-body equations of motion and handling
non-central/off-axis impacts, and present simulations of collisional and rotational
disruption of asteroids as illustrative examples. This work is part of an ongoing effort
to improve the realism and applicability of numerical simulations to the collisional
and dynamical evolution of asteroids and other small solar system bodies.
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1 INTRODUCTION

The internal structure of asteroids is poorly understood, despite several space-
craft missions that have provided a wealth of in-situ data. There is growing
indirect evidence that asteroids larger than a few hundred metres in diam-
eter are aggregates of smaller cohesive pieces. We call such bodies “gravita-
tional aggregates,” because gravity is the principal force holding the body
together (Richardson et al., 2002). Such a body has little or no material co-
hesion between its components, so it can be disrupted by relatively weak
tensile (outward-pointing) forces, such as those manifest in tidal encounters
with planets (Richardson et al., 1998; Walsh and Richardson, 2006a, 2008) or
generated by rotation arising from such forces as the “YORP” thermal effect
(Rubincam, 2000; Vokrouhlický and Capek, 2002; Bottke et al., 2002, 2006).
A “rubble pile” is a special case of gravitational aggregate that has moder-
ate bulk porosity (i.e., a fair amount of internal void space, possibly due to
jumbling of the body’s components) and no cohesion between components.

The most compelling evidence so far that suggests asteroids may be gravi-
tational aggregates (if not rubble piles) comes from images returned by the
Hayabusa spacecraft of asteroid 25143 Itokawa (Fujiwara et al., 2006). These
images show an irregular ∼500 m long body with a boulder-strewn surface, as
might be expected from reaccumulation following catastrophic disruption of
a larger parent asteroid (Michel et al., 2001). The inferred low bulk densities
of many primitive asteroids, obtained either by direct spacecraft measure-
ment (e.g., Yeomans et al., 1997) or inferred from the orbits of satellites (e.g.,
Merline et al., 1999), are also suggestive of possible jumbled interiors: bulk
porosities of 40–60% are required if such bodies are the parents of chondritic
material on Earth. Simulations of catastrophic main-belt impacts followed by
gravitational reaccumulation of fragments are a good match for present-day
asteroid families (Michel et al., 2001, 2002, 2003, 2004a,b; Durda et al., 2007),
and can lead to binary formation (Durda et al., 2004). Indeed, after their long
history of sub-catastrophic impacts, surviving present-day asteroids of diam-
eter & 100 m likely have fractured or rubblized interiors, which may explain
how asteroids such as 253 Mathilde endured giant-crater-forming impacts (the
jumbled interior strongly damps propagation of the impact shock energy: As-
phaug et al., 1998; also see Asphaug and Melosh, 1993, and Veverka et al.,
1997; an alternative explanation is that the impact energy went into crush-
ing microporous surface material: Housen et al., 1999; Housen and Holsapple,
2003).

Pravec and Harris (2000; also see Pravec et al., 2002, 2005) noted from lightcurve
data that most near-Earth asteroids (NEAs) with diameters & 150 m are spin-
ning below the breakup limit for cohesionless objects (for an assumed typical
bulk density), and moreover that there is a large concentration of bodies just
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inside that limit, suggesting that most objects can spin up to their breakup
point, but not beyond, possibly because most are cohesionless or nearly so.
However, Holsapple (2007) points out that even bodies with some cohesion, if
they are large enough that their self-gravity makes the contribution of their
cohesion irrelevant, will break up near the cohesionless spin limit, so the exis-
tence of a spin barrier does not require these bodies to be cohesionless per se;
nonetheless, such bodies are still subject to rotational disruption. Most fast
rotators (period . 2 h) are small bodies . 100 m for which material strength
is expected to dominate over gravitational cohesion (e.g., Love and Ahrens,
1996; Asphaug et al., 1998). However, Holsapple (2007) also suggests that sus-
taining such fast rotation only needs a very small but non-zero cohesion, so
even these small bodies may have some aggregate structures.

Although not an asteroid, the breakup and subsequent impact into Jupiter of
Comet D/Shoemaker-Levy 9 (SL9) spurred the idea that small solar system
bodies may be fragile in general. Asphaug and Benz (1994) showed that the
SL9 breakup into the so-called “string of pearls” was consistent with tidal
disruption of a gravitational aggregate followed by gravitational reaccumu-
lation of the fragments. This is a very generic result that depends only on
gravity (Richardson et al., 1998; Walsh et al., 2003; Walsh and Richardson,
2006a, 2008). The presence of crater chains on the jovian moons (Schenk et al.,
1996) and one or two on Earth’s moon (Bottke et al., 1997) indicate that this
process has occurred repeatedly to comets and possibly even asteroids over
the lifetime of the solar system. Other evidence for small solar system bodies
being gravitational aggregates includes the unusual shapes of certain aster-
oids derived from delay-Doppler radar imaging, indicative of tidal distortion
(Ostro et al., 1995; Bottke et al., 1999), the large fraction of doublet craters
on the terrestrial planets, which can be explained by tidal fission of rubble-
pile asteroids (Bottke and Melosh, 1996a,b), the mysterious disintegration of
Comet C/1999 S4 (LINEAR) (cf. Farnham et al., 2001) and others, and the
Galileo spacecraft measurement of the surprisingly low density of Jupiter’s
moon Amalthea (Anderson et al., 2002).

The notion that small solar system bodies are fragile motivates theoretical
studies into the origin and evolution of such bodies. We have developed com-
puter code, an extension of the N -body package pkdgrav (Stadel, 2001), for
performing numerical simulations of the collisional and gravitational dynam-
ics of aggregates, with or without cohesion. The code uses a hierarchical tree
algorithm to reduce the cost of computing interparticle forces, and parallel
structure to balance the work among multiple processors, so that simulations
of tens of thousands to even millions of strongly interacting/colliding particles
are feasible. Earlier simulations of gravitational aggregates typically consisted
of idealized rubble piles made up of equal-size solid spheres (Richardson et
al., 2005). Such code has been used to follow the fragments generated by the
disruption of a large asteroid during the subsequent ejection and reaccumula-
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tion phase (Michel et al., 2001, 2002, 2003, 2004a,b). But in these simulations,
fragment shapes were limited to perfect spheres, and when fragments collided
with each other, they merged into a single sphere (or bounced off each other,
depending on their relative impact speeds). So, the determination of the fi-
nal shape of fragments could not be addressed. Recent work on other codes
has led to less idealized models featuring, for example, ellipsoids instead of
spheres (Roig et al., 2003) or more complex polyhedral shapes (Korycansky
and Asphaug, 2006), but these are computationally much more expensive and
therefore limited to far fewer particles. Recently we have developed a numeri-
cal method in which spheres can be bonded together into coherent units that
interact both gravitationally and collisionally. We call the units “bonded ag-
gregates” to distinguish them from rubble piles; if the bonds are weak, the
bodies are still gravitational aggregates. Since the components of each bonded
aggregate are spheres, collision detection is simplified, and the full tool set of
the numerical code for reducing the cost of point-particle force calculations
can still be exploited. In Section 2 we describe the numerical method in de-
tail. In Section 3 we present preliminary simulations using the new method.
In Section 4 we discuss future applications and development.

2 METHOD

We use pkdgrav, a numerical gravity solver first developed for cosmologi-
cal modeling at the University of Washington (Stadel, 2001). The code was
adapted to treat hard-sphere collisions for planetesimal modeling (Richardson
et al., 2000). The main technical features of the code include a hierarchical
tree algorithm for reducing the computational cost of interparticle force cal-
culations and a complete parallel implementation for balancing work across
an arbitrary number of processors. These features place pkdgrav among only
a handful of truly parallel treecodes available to the astronomy/planetary
science community for modeling complex systems of gravitationally and colli-
sionally interacting particles. Many aspects of the code, including the ability
to model semi-rigid bodies (bonded aggregates), are, as far as we know, unique
to pkdgrav.

2.1 Equations of Motion

Fundamentally, pkdgrav solves Newton’s equations of motion for self-gravitating
point particles,

r̈i = −
∑

j 6=i

Gmj(ri − rj)

|ri − rj|3
, (1)
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where r denotes position (in three spatial dimensions), m is mass, G is the
gravitational constant, i, j ∈ [1, N ] are indices, N is the number of particles,
and the derivatives are with respect to time. In the absence of time-saving
measures such as the treecode, computation of interparticle forces scales as
1

2
N(N − 1) (the 1

2
comes from Newton’s law of reciprocal actions), or O(N2)

for N ≫ 1. With the treecode, the potentials due to distant groups of particles
are approximated by multipole expansions about the group centers of mass,
resulting in computation times that scale as O(N log N) but that give rise to
small force errors (cf. Barnes and Hut, 1986). The errors are controlled by
a single parameter that determines how small and distant a group of parti-
cles must be to use the approximation. Typical implementations expand the
potentials to quadrupole order; pkdgrav expands to hexadecapole order.

The 6N coupled ordinary differential equations of Eq. (1) are solved using a
second-order “leapfrog” integrator:

ṙi,n+1/2 = ṙi,n + (h/2)r̈i,n “kick”

ri,n+1 = ri,n + hṙi,n+1/2 “drift”

ṙi,n+1 = ṙi,n+1/2 + (h/2)r̈i,n+1 “kick”,

(2)

where h is the (constant) timestep that takes the system from step n to step
n + 1. Each stage in the kick-drift-kick sequence is performed for all parti-
cles i. The timestep h is chosen to ensure adequate sampling of the short-
est dynamical time in the system, which is typically ∼ 1/

√
Gρ, where ρ is

the characteristic mass density of a particle. The principal advantage of the
leapfrog method, which as shown “kicks” the particle velocities while holding
the positions constant, then “drifts” the particle positions while holding the
velocities constant, is that it is symplectic, meaning it has good conservation
properties for sufficiently small, constant h (see Saha and Tremaine, 1992 for
details; note however that the tree is not strictly momentum conserving, and
collisions remove energy from the system). Another advantage is that it makes
collision detection particularly simple (Section 2.2). In the leapfrog scheme,
the accelerations r̈i are computed using the treecode after each drift (and once
at the very start of the simulation), before the next kick.

2.2 Collision Handling

For modeling collisions between particles, each particle is treated as a rigid
sphere of given radius. Since particle positions change only during the drift
step, and the change is linear in time, collisions between particles can be pre-
dicted by solving a quadratic equation for the time of surface contact between
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any two approaching spheres (Richardson et al., 2000; Appendix A). This is
an approximation since in reality the particles generally do not move through
the intervening space in straight lines; errors arising from this simplification
can be reduced by shortening the timestep. To reduce the cost of the colli-
sion search, a variant of the pkdgrav tree algorithm is used to find the Nn

closest neighbours of each particle (the method scales as Nn log N). Typically
Nn ∼ 16, which is sufficient to find all possible colliders in a close-packed
configuration of equal-size particles, and allows for the possibility of detecting
collisions with more distant neighbours approaching at faster relative speeds.
For collisional simulations involving a range of particle sizes, Nn needs to be
increased.

A collision search is performed for all particles at the beginning of the drift
step and any potential collisions found are processed in time order. Once a
collision is detected, the outcome is determined based on user-defined param-
eters that include the amount of dissipation (restitution and surface friction)
and whether particles stick or bounce on contact. Particles that stick result
in the formation of a bonded aggregate. For bouncing, billiard-ball restitution
equations are used (including spin if there is surface friction; cf. Richardson,
1994). After a collision, the particles involved (and any particles in the system
that were identified as possibly colliding with either of the colliders later in
the drift interval) are subject to a new potential collider search. In this way,
all collisions are detected and processed in the correct time order, even if a
given particle suffers more than one collision in a drift interval (which is often
the case for close-packed configurations). Once all collisions have been han-
dled, the final end-of-drift particle positions are assigned and the interparticle
gravity is computed.

2.3 Bonded Aggregates

A new feature of pkdgrav is the ability to model the behaviour of bonded
aggregates of spheres that are constrained to move as a single unit. Such
aggregates can already exist at the start of a simulation, or gradually form
during a simulation if particle sticking is enabled. In the code, each aggregate
is treated as a “pseudo-particle” with center-of-mass position and velocity
computed from its constituent particles (which are otherwise treated as in-
dependent bodies). Each aggregate has a unique identifier that is used when
collecting information from its constituent particles (which may be distributed
over more than one processor). The mass centers of bonded aggregates, i.e.,
the pseudo-particles, obey the usual equations of motion, with the center-of-
mass acceleration of each aggregate computed as the mass-weighted average
of the accelerations of their constituent particles before each kick. In addition,
however, the rigid-body Euler equations must be solved for the rotation (cf.
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Richardson, 1995),

I1ω̇1 − ω2ω3(I2 − I3) = N1

I2ω̇2 − ω3ω1(I3 − I1) = N2

I3ω̇3 − ω1ω2(I1 − I2) = N3

(3)

(where Ik are the principal moments of inertia of the body, ωk are the spin
components in the body frame, and Nk are the net torque components in the
body frame), and for the principal axis orientations,

˙̂p1 = ω3p̂2 − ω2p̂3

˙̂p2 = ω1p̂3 − ω3p̂1

˙̂p3 = ω2p̂1 − ω1p̂2

(4)

(where p̂i denote the principal axes). This set of 12 equations for each aggre-
gate is solved using a fifth-order time-adaptive Runge-Kutta integrator during
the drift step (the equations are not conducive to the leapfrog integrator). The
torque is given by

N = ΛT

[

∑

i∈a

mi(ri − ra)×(r̈i − r̈a)

]

, (5)

where the subscript a refers to the aggregate center of mass and Λ ≡ (p̂1|p̂2|p̂3)
is a matrix—whose columns are the principal axes of the aggregate—that
transforms vector quantities from the body frame to the space frame (so the
transpose does the opposite). Computing the torque is O(N), so it does not
add significantly to the overall simulation cost. The principal moments and
axes are computed by diagonalizing the inertia tensor of each aggregate (cf.
Richardson, 1995), which is done whenever a particle is added to or removed
from the aggregate.

2.4 Modified Collision Handling

The presence of bonded aggregates complicates collision prediction and resolu-
tion. Although particles within a bonded aggregate by definition do not collide
with one another (since they are constrained to have no relative motion, a fact
that can greatly speed up collision searches), the rotational motion of these
bodies means that the time of collision with an external particle (perhaps
itself part of a bonded aggregate) cannot be solved for exactly. Instead, the
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quadratic time-of-collision equation is modified slightly to account for the ro-
tational motion expanded to second order using a Taylor series (see Appendix
A). This is a necessary approximation, and in any case the orientation of the
aggregate(s) is advanced to the estimated time of collision using the Runge-
Kutta integrator, so the precise circumstances of the impact may be slightly in
error relative to the prediction. In the event of a missed collision, special over-
lap handling methods (not discussed here) quickly correct the problem. Tests
show that numerical artifacts are negligible and that the expected physical be-
haviour occurs when bonded aggregates collide (for example, bouncing cubes
settle to a minimum energy configuration with faces touching and without
relative motion; see Fig. 1).

[[FIGURE 1 GOES HERE, FULL COLOUR (web & print)]]

There are 3 supported collision outcomes for bonded aggregates: sticking on
contact (to grow the aggregate); bouncing (computed for these generally non-
central impacts using the method of generalized coefficients—cf. Brach, 1998
and Richardson, 1995; for completeness, a summary of the pertinent equations
is given in Appendix B); and fragmentation (wherein the particles involved
become detached from their respective aggregates and proceed to bounce as
rigid spheres, possibly releasing more particles). Currently the user can specify
which of these outcomes are allowed, and the circumstances under which each
is invoked (generally given as an impact speed threshold relative to the surface
gravitational escape speed).

2.5 Strength Models

The fragmentation outcome discussed above is a simple model of fracture
formation at (and propagation from) the point of impact. We have also imple-
mented some simple strength models in an ongoing effort to mimic the stress
response of real materials to rotation and tidal forces (see Holsapple, 2007).
These models are still under development, so only brief discussions are given
here.

2.5.1 Rigid failure

In this model, bonded aggregates are given a size-dependent strength (S ∝ Rα,
where R is the aggregate effective radius) in either the normal (tensile) or tan-
gential (shear) directions, or both. The aggregate experiences no strain as the
stress increases: it remains perfectly rigid until the strength is exceeded. The
failure test is performed each step immediately following the gravity calcu-
lation: each bonded aggregate is checked in turn to see if any constituent
particles are experiencing a differential acceleration relative to the aggregate
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center of mass that exceeds the user-supplied strength law, in either the nor-
mal (for tensile stress) or tangential (for shear stress) direction. This stress
can arise from gravitational tidal effects due to close encounters with other
bodies in the system, fast rotation, or both. Particles experiencing excessive
stress are liberated from the aggregate and become free particles in the system.
Free particles that stick to an aggregate (if that outcome is allowed) immedi-
ately inherit the full strength of the aggregate. We do not keep track of weak
bonds, or cracks, etc. For these calculations, the strength (in units of pressure)
is converted to a maximum acceleration by multiplying by the cross-sectional
area and dividing by the mass of the particle under consideration. Note that
since we do not track fractures or cracks, this failure model is only a crude
approximation to the behaviour of real cohesive materials (which generally fail
at their weakest point, for a sufficiently slowly increasing stress). With this
model, particles typically are first lost from the periphery of the aggregate,
since stress arising from rotation is greatest there.

2.5.2 Elastic failure

As shown in Section 3 (Fig. 3), the rigid failure model has an “all-or-nothing”
response to impulsive stress, such as a tidal encounter, and the liberated par-
ticles generally escape to infinity. This is not conducive to, for example, binary
formation, which motivates a second model in which the aggregate can experi-
ence some strain (increasing separation between constituent particles) before
failure. The inverse of the ratio of the strain response to the applied stress
is Young’s modulus. For this model we do not use the rigid aggregate code
(because the particles must be free to move) but instead add a restoring force
between particles that is proportional to the strain (and hence the Young’s
modulus times the stress), up to a maximum stress/strain. The user supplies
the Young’s modulus and the maximum allowed strain (expressed in units of
particle separation). If the strain limit is exceeded (relative to all neighbour-
ing particles), the particle is forever liberated, so returning particles do not
regain their cohesion. As with the rigid failure model, the restoring force is
expressed as an acceleration by multiplying the stress by the particle cross-
sectional area divided by its mass. Internally, liberated particles are flagged
so that they no longer feel a restoring force, even if they come back in contact
with the remnant aggregate. The computation of strains and restoring forces
is done each step after the interparticle gravity calculation and uses the same
neighbour search tree as for collision detection. For simplicity, particles are
assumed to experience no relative stress if they are nearly in contact, so that
a close-packed rubble pile starts in an almost stress-free state. As the parti-
cles become displaced from one another, the stress builds. A better approach
would be to measure displacement from a fixed initial lattice; this is a future
project that will require considerable code development to be of general use.
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3 SIMULATIONS

3.1 Gravitational Reaccumulation

The principal motivation for adding bonded aggregates to pkdgrav is to
address the limitations of the reaccumulation model used in asteroid fam-
ily/satellite formation simulations (e.g., Michel et al., 2001; Durda et al.,
2004), namely that reaccumulating particles are merged into single spheres
if they impact at slow speed, thus losing important shape and spin informa-
tion. In the case of satellite formation in particular, retaining some shape/spin
information is important in order to provide a more realistic gravity field in
proximity to the largest remnant, which is the most important factor in dictat-
ing the stability of any satellites. Although more computationally expensive
than the simple merging model, bonded aggregates permit many more par-
ticles to be used than simulations that do not allow any merging or sticking
at all, because the number of collisions occurring per timestep in the largest
remnant would be prohibitively large in the latter case.

Figure 2 shows a snapshot of the largest reaccumulated remnant following
a high-speed disruptive impact into an asteroid (in the manner of Michel et
al., 2001). Here we used the bonded aggregate model with collisional and ro-
tational/tidal fragmentation enabled (using the rigid failure approach). The
bulk of the body formed from material that experienced the least amount of
acceleration after the impact, but the rest of it consists mostly of large frag-
ments that reaccumulated on their own and then fell back onto the largest
remnant (this is made evident by the colour scheme in the figure: aggregates
that form independently retain a unique colour, even if they subsequently
bond with another aggregate). In this model the sticking criterion was set to
10% of the relative escape speed, so most clumps bounce (with dissipation)
for a while on the surface before sticking. This leads to fairly efficient packing,
as seen in this example. It is interesting to compare this outcome with images
of Itokawa: similarities in overall structure and the presence of large surface
components are striking. However, it must be emphasized that we are using
a very simple prescription for complicated mechanical processes. Much work
remains to determine the validity and applicability of these models. Encour-
agingly, the size and velocity distribution of the reaccumulated fragments in
these tests match well with the original models that used the simple spherical
merging model (which in turn match well with observed asteroid families),
indicating the robustness of the conclusion that gravitational reaccumulation
plays a key role in asteroid family formation. We have begun to explore the
effects of stepsize, stick/bounce threshold, overlap handling method, strength
model, etc. on the outcome (Michel et al., in preparation). So far the end re-
sults largely differ only in the details, e.g., the largest remnant mass remains
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fairly consistent, but the distribution and arrangement of the reaccumulated
fragments vary. This is to be expected given the many degrees of freedom in
the problem.

[[FIGURE 2 GOES HERE, FULL COLOUR (web & print)]]

3.2 Rotational Disruption

Figure 3 is a comparison of the strength models (Section 2.5), showing the
evolution of the cohesionless, rigid (non-deformable), and elastic cases, start-
ing with a rapidly spinning aggregate. We start with supercritically spinning
aggregates in order to test the stress response, and to see whether mass loss
results in binary formation (since YORP spin-up past the classical breakup
limit for cohesionless bodies is now strongly suspected to play a role in the
formation of near-Earth and small main belt asteroids; Walsh and Richard-
son, 2006b, 2008; Walsh et al., in preparation). The result for the rigid case
is typical: in over 300 simulations performed (of over 5000 particles each),
starting from uniform random samplings of a parameter space of body axis
ratio, initial spin (all supercritical), and a strength law of S = kR−1/2 with 2
coefficient values (the extremes of 2.25×107 dynes cm−3/2 and 2.25×108 dynes
cm−3/2 given in Holsapple, 2007, corresonding to the strength envelope that
best fits observed asteroid spin data and extrapolation from laboratory exper-
iment, respectively), not a single case resulted in satellite formation. Either
the body survived without reshaping (because nowhere did the stress exceed
the strength), or it lost an outer layer that escaped to infinity without any
reaccumulation. The case of cohesionless bodies was explored in Richardson
et al. (2005), but only for initially prolate shapes. Nonetheless, with a larger
search space that included initially oblate shapes, we still find that no sub-
stantial amount of material remains in orbit around the remnant for any of the
runs performed, but the remnant does typically reshape, with the most violent
mass-loss cases leading to remnants that settle close to the Maclaurin/Jacobi
fluid equilibrium configurations (also see Tanga et al., this issue).

[[FIGURE 3 GOES HERE, FULL COLOUR (web & print)]]

The elastic case shown in Fig. 3, although not typical, illustrates a fairly
common outcome in which failure proceeds by “fracturing” into strands, some
of which later pull back together to form coherent clumps. In this particular
case, a binary eventually forms. For this model, a Young’s modulus of 500 Pa
was used, with a strength of 250 Pa. These values, though somewhat arbitrary,
are comparable to upper limits derived for SL9 (Asphaug and Benz, 1996) and
the Deep Impact target, Comet Tempel 1 (A’Hearn et al., 2005). However,
much work is needed to understand the applicability and limitations of this
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model.

4 SUMMARY AND FUTURE WORK

We have added the capability of modeling gravitational aggregates with strength
to our simulation code pkdgrav by allowing spherical particles to bond to-
gether. The rigid body equations of motion with torque and off-axis dissipative
collisions are solved during the regular integration step. Rules for collisional
and rotational/tidal fragmentation are provided, with the latter enabled as
either a rigid or elastic failure model. (The elastic failure model does not use
the aggregate code.) We have begun exploring this vast new parameter space,
concentrating on simulations of asteroid family formation and rotational dis-
ruption of asteroids. Current and future projects include simulations of rubble
piles made up of small (2-, 3-, 4-particle) aggregates as a proxy for real, jum-
bled, irregular material, and implementing a wide array of strength models,
including cases that allow plastic deformation (no restoring force).
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A COLLISION PREDICTION

A.1 Single Particles

Consider two spherical particles of radius s1 and s2 on linear trajectories with
relative speed v ≡ v2 −v1 and initial relative position r ≡ r2 − r1. We assume
r > s1 + s2 (i.e., the particles are not overlapping or in contact). Suppose
these particles are approaching one another (such that r·v < 0) and collide
at some future time t (such that their relative position vector r′ ≡ r′2 − r′1 has
magnitude r′ = s1 + s2). To solve for t, note that r′ = vt + r for constant v.
Set r′·r′ = (s1 + s2)

2 (the condition for mutual contact), whence

v2t2 + 2(r·v)t + r2 = (s1 + s2)
2. (A.1)

This is a quadratic equation with roots

t =
−(r·v) ±

√

(r·v)2 − [r2 − (s1 + s2)2] v2

v2
, (A.2)

where the smallest positive value of t is chosen to resolve the sign ambiguity.

A.2 Bonded Aggregates

Now consider two aggregates, consisting of rigid collections of spheres, whose
centers of mass are initially located at Ri, i = 1, 2, and whose (constant)
velocities are Vi. Consider a spherical particle on each respective aggregate,
located initially at position ρi in space coordinates with respect to each center
of mass (so the initial space positions are ri = Ri + ρi). The velocity of
each particle is a combination of the linear velocity of the aggregate plus the
rotational motion about the aggregate center of mass. To second order, the
space position of particle i after time t is given by

r′i =
[

Vi + Ωi×ρi +
1

2
Ωi×(Ωi×ρi)t

]

t + ri, (A.3)

where Ωi is the angular velocity of aggregate i (in the space frame), considered
constant over a sufficiently small interval t. This expression was obtained by
taking a Taylor expansion of the position vector to second order. Let ui ≡
Vi + Ωi×ρi, qi ≡ Ωi×(Ωi×ρi), u ≡ u2 − u1, and q ≡ q2 − q1. Hence
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r′ = (u + 1

2
qt)t + r. Then, if as before we require r′ ≡ |r′2 − r′1| = s1 + s2, we

find

1

4
q2t4 + (u·q)t3 +

[

u2 + (r·q)
]

t2 + 2(r·u)t + r2 = (s1 + s2)
2. (A.4)

This is a quartic equation in t for which the solution is non-trivial. For small
t, the equation can be reduced to quadratic form by dropping the first two
terms. The result is a good approximation for the time to contact between
two spherical particles on two rotating aggregates:

t =
−(r·u) ±

√

(r·u)2 − [r2 − (s1 + s2)2] [u2 + (r·q)]

u2 + (r·q)
(A.5)

(compare with Eq. (A.2)). Again the sign ambiguity is resolved by choosing
the smallest positive t. For collisions between an aggregate and a single sphere,
replace ui with vi and qi with zero for the sphere in these expressions.

B COLLISION RESOLUTION: NON-CENTRAL IMPACTS

From the method of generalized coefficients (Brach, 1998), the change in veloc-
ity and spin of two aggregates made up of spheres involved in a point-contact
collision is given by (cf. Richardson, 1995 for the derivation)

∆V1 = γ(1 + ǫn)(M2/M)wnn̂

∆V2 = −γ(1 + ǫn)(M1/M)wnn̂

∆Ω1 = M1I
−1
1 (c1×∆V1)

∆Ω2 = M2I
−1
2 (c2×∆V2),

(B.1)

where Mi and Ii are the masses and inertia tensors of the aggregates (M =
M1+M2), ǫn is the normal coefficient of restitution, n̂ is a vector perpendicular
to the contact plane and pointing toward body 2, ci is a vector from aggregate
i’s center of mass to the contact point, wn = (w2 −w1) · n̂, wi ≡ Vi +Ωi×ci,
and γ is a factor that depends on the impact geometry:

γ−1 = 1 + µ(a22c
2

1,p − 2a23c1,tc1,p + a33c
2

1,t + b22c
2

2,p − 2b23c2,tc2,p + b33c
2

2,t),(B.2)

where µ = M1M2/M is the reduced mass, t and p denote mutually perpendic-
ular components tangential to the contact plane (constructed from n̂ by the
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Gram-Schmidt orthonormalization process), and a = (akk) and b = (bkk) are
the inverses of the inertia tensors of the aggregates, expressed in this new ntp
coordinate system. The latter matrices are obtained by noting that

Intp = XTIX, (B.3)

where I is the inertia tensor in the space frame and X = (n̂|̂t|p̂) is a matrix
whose columns are the basis vectors of the ntp coordinate system.

For collisions between an aggregate and a single sphere, replace ci with (3 −
2i)Rin̂, where Ri is the radius of the sphere in question (i = 1, 2), so ci,t =
0 = ci,p. If both colliders are single spheres, the system reduces to the familiar
billiard ball equations without surface friction (γ = 1, ∆Ω1 = 0 = ∆Ω2,
and wn becomes just the normal component of the relative velocity). Surface
friction greatly increases the complexity of the restitution equations for non-
central impacts and may not lead to unique solutions (see Brach, 1998 for
details).
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Figure Captions

Figure 1: Snapshots of 3 colliding rigid cubes made up of identical spheres.
The cubes experience torques via mutual gravity and collisions. The colli-
sions are dissipative. In this example the cubes quickly achieve a minimum
energy state where they present only flat faces to each other. There is net
(non-zero) total angular momentum in this system.

Figure 2: Snapshot of the largest reaccumulated remnant approximately 11
days after the disruption of a 25 km diameter pre-fragmented basalt asteroid
by a 2.4 km radius projectile travelling at 5 km s−1 at an impact angle of
45◦, corresponding to an impact energy of 1.13 × 108 erg. The stepsize was
5 s and the normal coefficient of restitution was set to 0.5. Although this
image only shows one body (the largest), many smaller ones formed in a
similar manner during the gravitational phase, such that at the end the
size distribution consists mostly of aggregates, with a variety of spins and
shapes, all produced by gravitational reaccumulation.

Figure 3: Snapshots of the evolution of 3 strength cases: cohesionless (top
row); rigid failure (middle); elastic failure (bottom). Evolution proceeds
from left to right in each row; the snapshots are equally spaced in time.
The initial condition was comparable in each case: an oblate aggregate with
supercritical spin relative to the self-gravity or strength (spin axis perpendic-
ular to the page). In the elastic model, red particles have been permanently
liberated. This particular case goes on to form a large, roughly spherical
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remnant with a sizable companion in a near-circular orbit.
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