Implications of Cohesion for Binary Asteroid Formation

Derek C. Richardson, Patrick Michel, Kevin J. Walsh University of Maryland/Observatoire de la Côte d'Azur

Meudon 2008

- * Gravitational aggregates
- * The code
- * Cohesionless models
- * Rigid models
- * Models with variable cohesion
- * The future

Gravitational Aggregates

Release 051101-2 ISAS/JAXA

Gravitational Aggregates

* ...are bodies made up of multiple components and having low relative tensile strength (RTS).
* RTS = (body tensile strength)/(component strength).
* Zero RTS → rubble pile.

- * Gravity dominates over material strength.
- May still have shear strength.
 * Ability to hold non-ideal-fluid-equilibrium shape.
- * Growing evidence for gravitational aggregates.

Modeling Gravitational Aggregates

- * Ingredients:
 - * Gravity.
 - * Collisions (with adjustable dissipation).
 - * Component shape effects (shear strength).
 - * Variable cohesion.

The Code: pkdgrav

- * N-body code that treats gravity and collisions between spheres (or collections of spheres).
- Solves equations of motion for point masses using second-order leapfrog integrator:

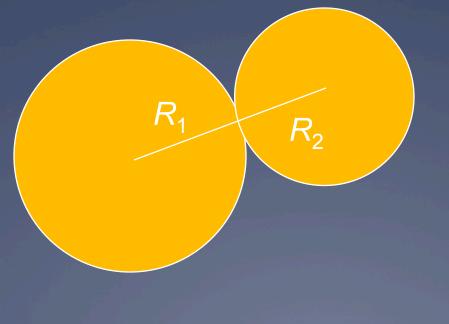
$$\ddot{\mathbf{r}}_{i} = -\sum_{j \neq i} \frac{Gm_{j}(\mathbf{r}_{i} - \mathbf{r}_{j})}{\left|\mathbf{r}_{i} - \mathbf{r}_{j}\right|^{3}}$$

Code Details

- * Based on cosmological code developed by Joachim Stadel and Tom Quinn.
- Uses modified k-d tree algorithm (with expansions to hexadecapole) to speed up calculations.
 Reduces force cost to O(N log N).
 - * Introduces small errors (<< 1%) in force calculation.
- Exploits parallelization to distribute work among available cores.
 - * Linear scaling up to hundreds of cores.

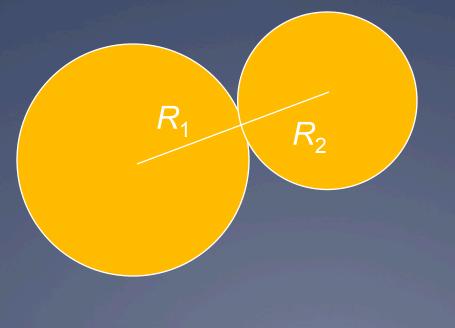
Collision Detection

- * Particles collide when separation distance equals sum of radii.
 - * Collisions predicted in advance during integration.
 - * Uses nearest-neighbor search tree.



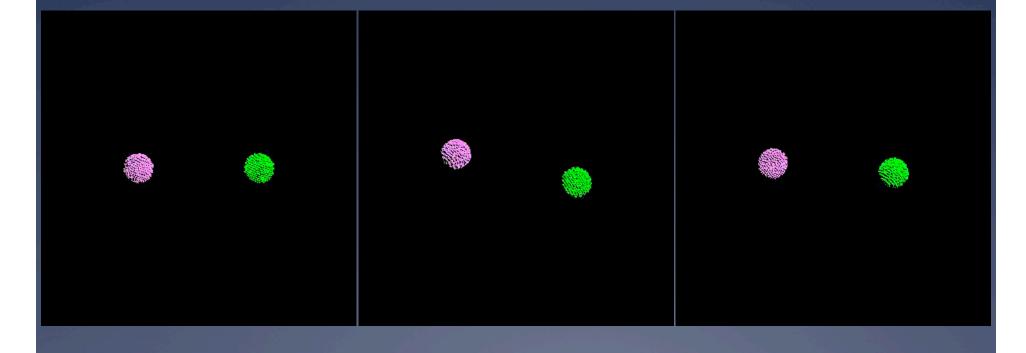
Collision Resolution

- * Post-impact speed(s) and/or body spin(s) set by sticking/bouncing/splitting rules.
 - * Bouncing parameterized by coefficient of restitution (normal & tangential).

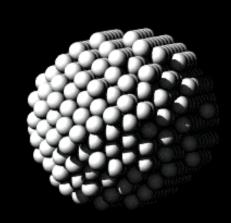


- * Idealized rubble piles (perfect, solid spheres; bouncing, no sticking or splitting).
- * Many uses. Basic assumption: gravity more important than material properties.

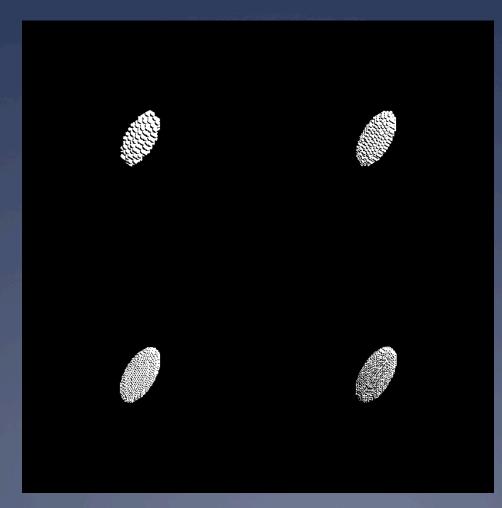
Rubble pile collisions



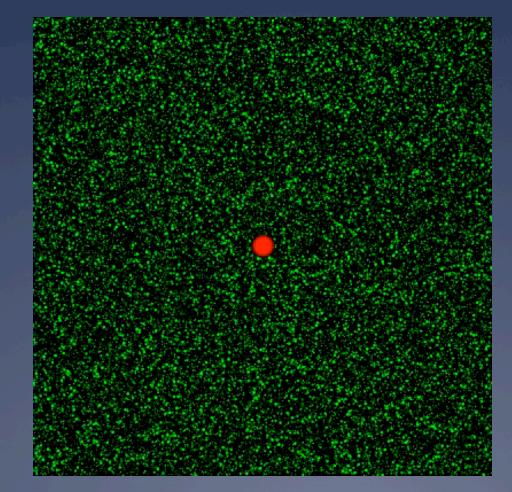
Tidal disruption



Effect of resolution



Planetary rings



Shear Strength

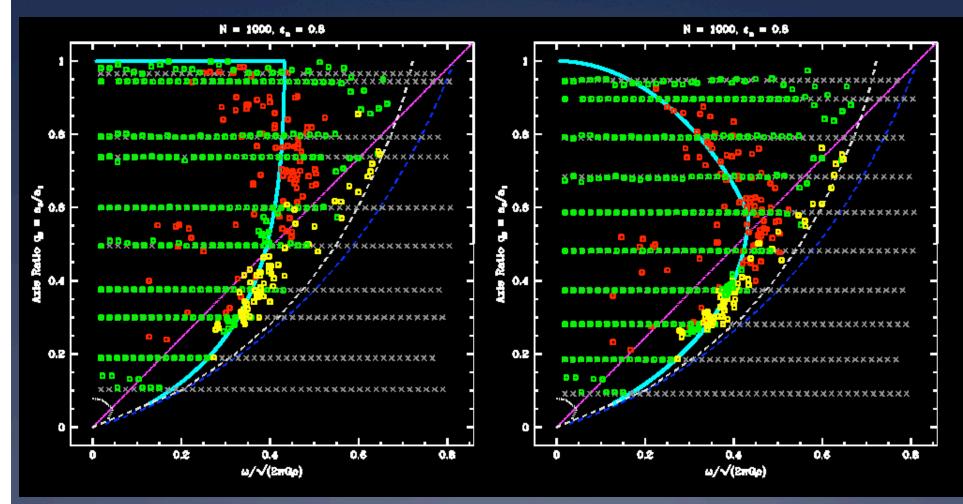
* Rubble piles do not require cohesion to retain non-equilibrium shapes.

* Finite particle effects provide shear strength.

Shear Strength

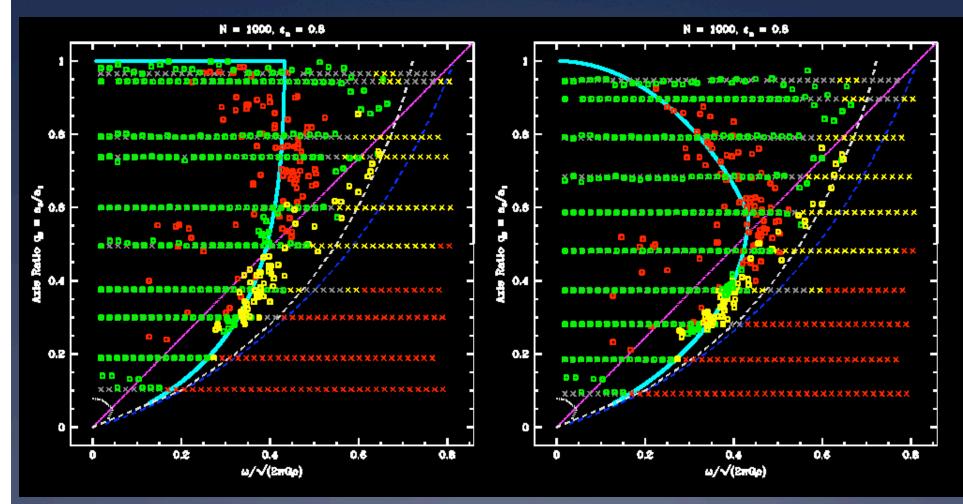
Rubble cubes colliding

Rubble Pile Equilibrium Shapes



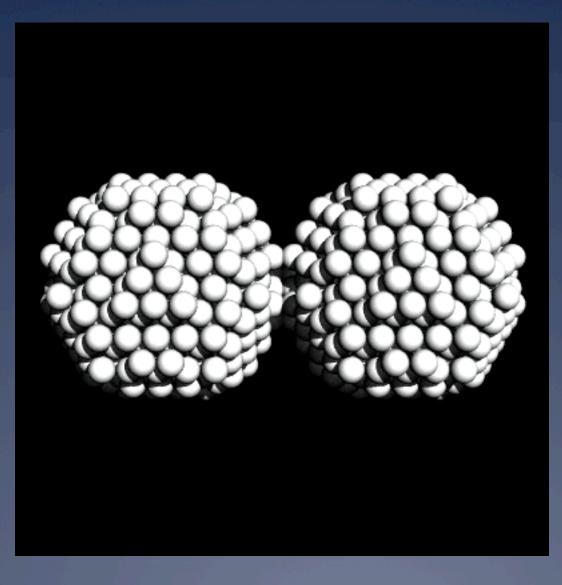
Mass loss: 0% < 10% > 10% X = initial condition

Rubble Pile Equilibrium Shapes



Mass loss: 0% < 10% > 10% X = initial condition

Rubble Fission



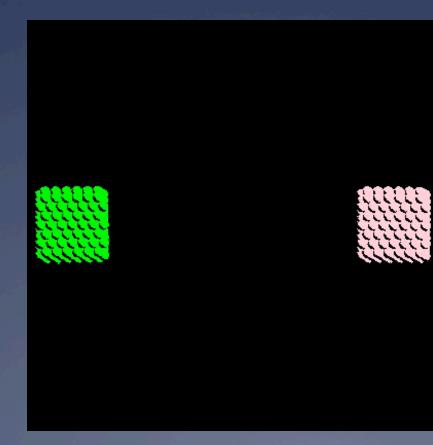
- * Can "fuse" spheres together to form more complex shapes.
- Either as an initial condition, or as a sticking rule (v_{impact} < v_{stick}).
- Need to solve Euler's equations of rigid-body motion with external torques.
 * Use 5th-order (time adaptive) Runge-Kutta.

$$I_{1}\dot{\omega}_{1} - \omega_{2}\omega_{3}(I_{2} - I_{3}) = N_{1}$$
$$I_{2}\dot{\omega}_{2} - \omega_{3}\omega_{1}(I_{3} - I_{1}) = N_{2}$$
$$I_{3}\dot{\omega}_{3} - \omega_{1}\omega_{2}(I_{1} - I_{2}) = N_{3}$$

$$\dot{\hat{\mathbf{p}}}_1 = \omega_3 \hat{\mathbf{p}}_2 - \omega_2 \hat{\mathbf{p}}_3$$
$$\dot{\hat{\mathbf{p}}}_2 = \omega_1 \hat{\mathbf{p}}_3 - \omega_3 \hat{\mathbf{p}}_1$$
$$\dot{\hat{\mathbf{p}}}_3 = \omega_2 \hat{\mathbf{p}}_1 - \omega_1 \hat{\mathbf{p}}_2$$

- * Collision detection and resolution considerably more complicated.
- Predict time to collision between spheres on rotating aggregates. Only an approximation.
- Solve outcome using method of generalized coefficients for non-central impacts.
 * Surface friction not supported.

Rigid cubes colliding



Rigid bodies torquing

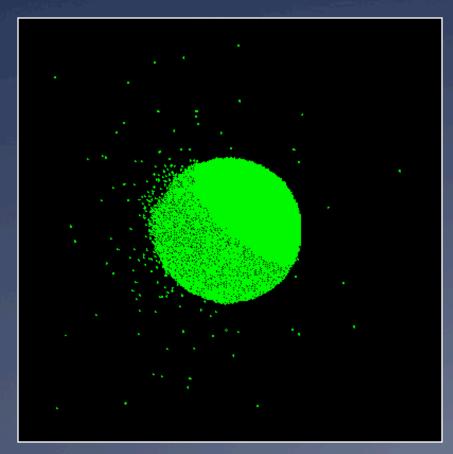
* Specify either...

- 1. ...size-dependent strength (and optional splitting threshold, $v_{impact} > v_{split}$) with only rigid failure;
- 2. or, Young's modulus and maximum strain to simulate elastic failure.

* In case 1 (rigid failure), strength $S \sim R^{\alpha}$, and stress arises from rotation and tides.

* Implementation:

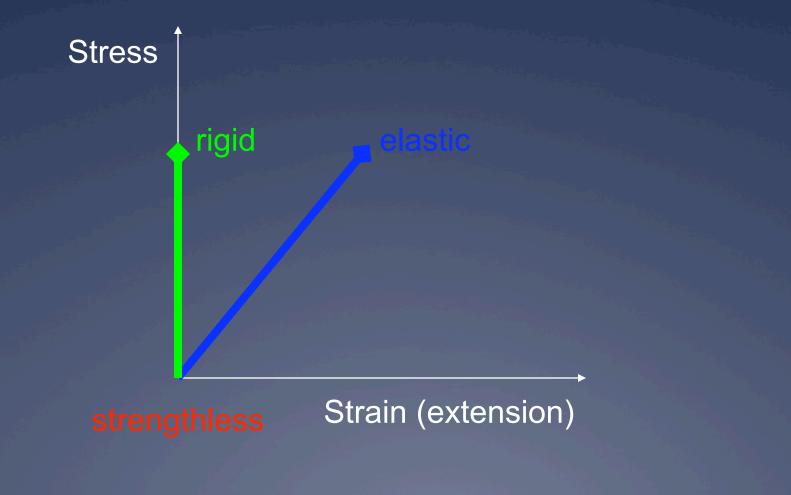
- * Compare acceleration acting on constituent particle relative to center of mass with strength multiplied by $\pi R^2 / m$.
- Particles experiencing excessive stress are liberated (but may stick again later, if desired).



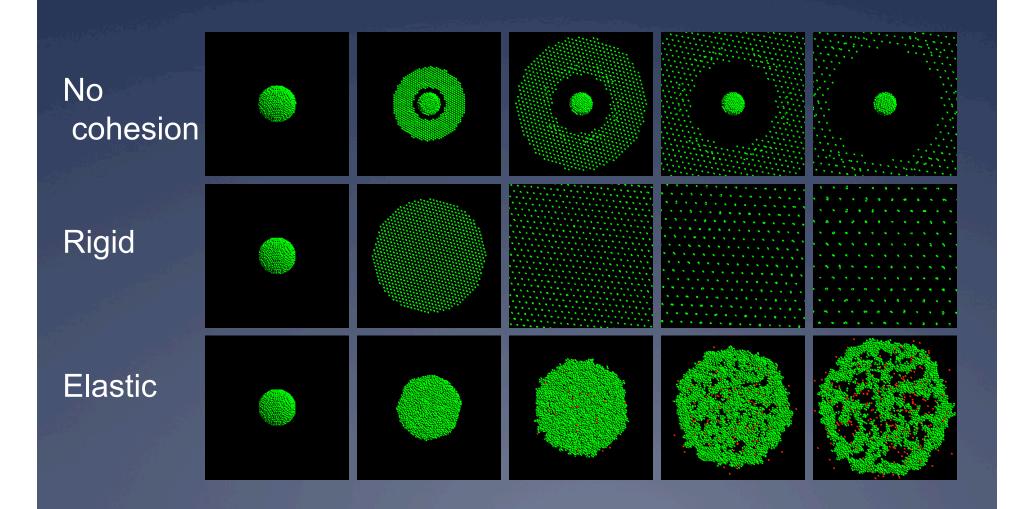
Post-catastrophic disruption gravitational reaccumulation with sticking, bouncing, splitting, and strength.

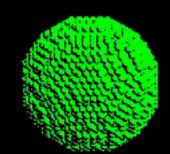
- In case 2 (elastic failure), particles can move with respect to one another, up to a maximum displacement (strain).
- * Implementation:
 - Particles must be free to move, so Euler's equations not used.
 - * Add restoring force between neighboring particles proportional to strain (= Young's modulus × stress).
 - * If maximum strain exceeded, particle permanently liberated (all particles start at close to zero strain).

Stress-strain Curve

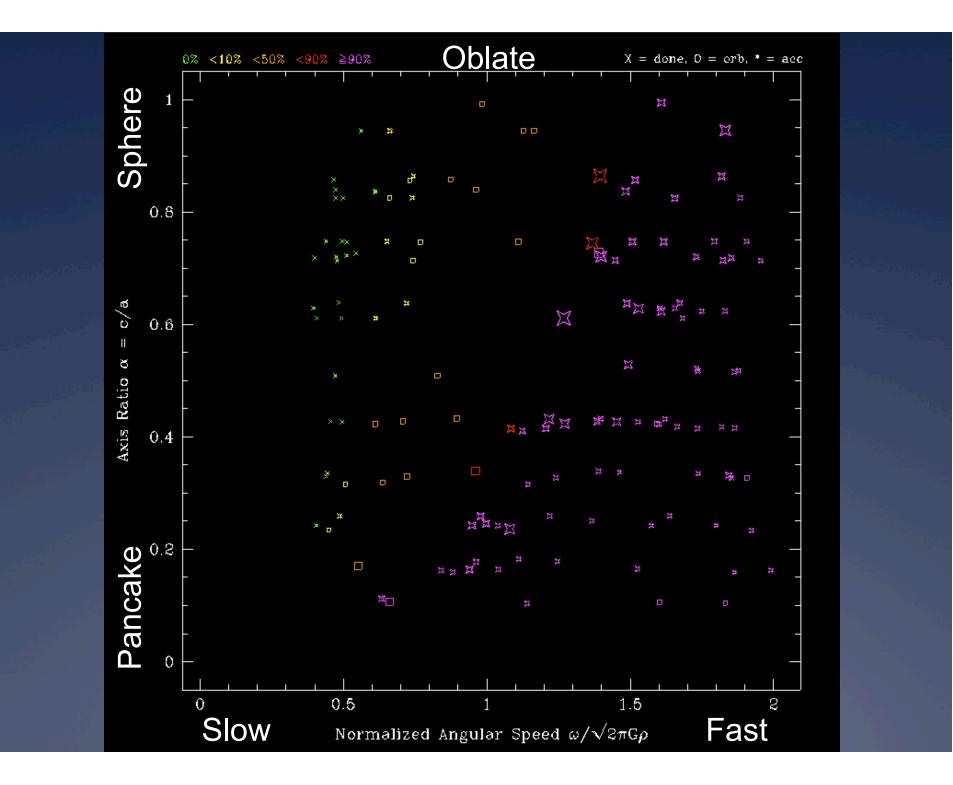


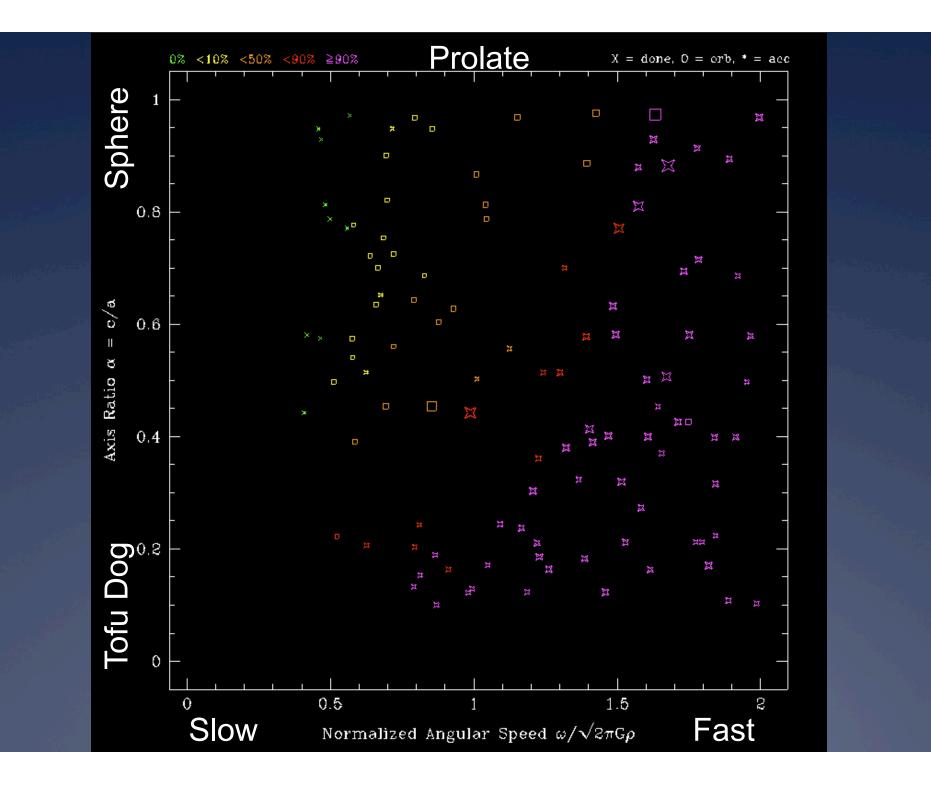
Response to Excessive Spin

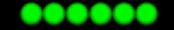


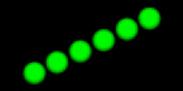


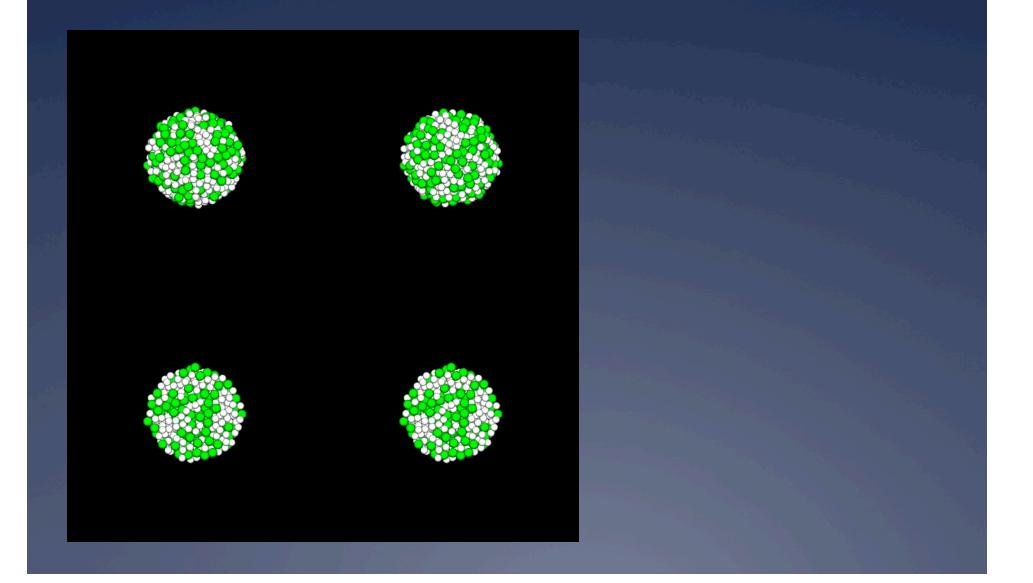
Elastic strain model at very high initial spin.

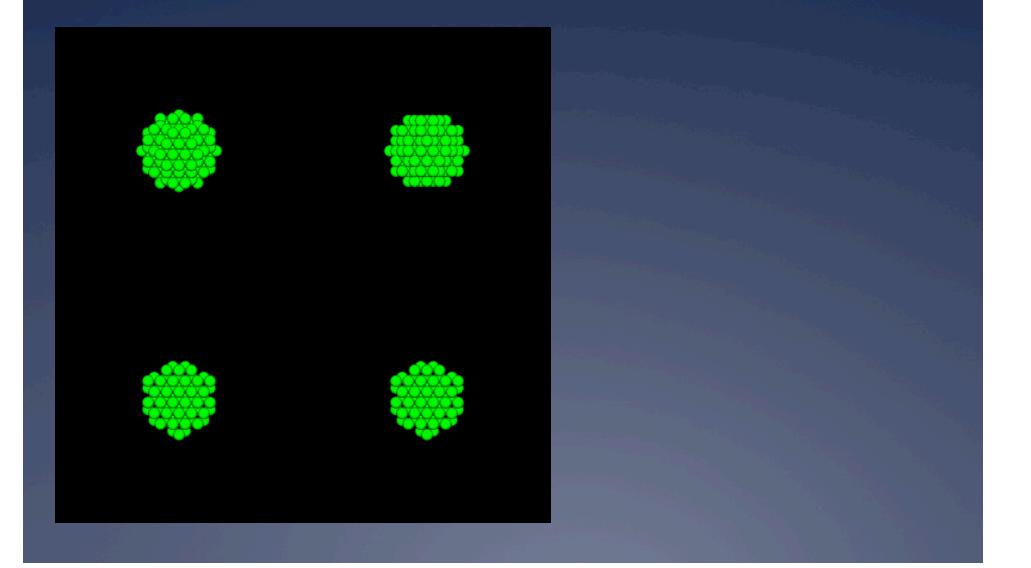












The Future

- Investigate effect of particle size/shape on gravitational aggregate dynamics (see next talk!).
- * Compare strength models with Holsapple.
- Express strain relative to initial lattice for elastic models.
- Implement particle memory for modeling weak points, cracks, etc.

Extra Slides...

Van der Waals Force

