
Presented at the Fifth International Symposium «Turkish-German Joint Geodetic Days», TU Berlin, 28–31 March 2006

PREDICTION OF THE ORBITAL EVOLUTION FOR LEO GEODETIC SATELLITES

A. Bezděk
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ABSTRACT:

The orbital changes of a LEO (low Earth orbit) satellite are – apart from the gravitational field forces – mainly influenced by atmospheric
drag, which causes the satellite to lose energy and to descend. To model accurately the atmospheric drag is a quite complex task. We
will discuss the uncertainty in predicting the orbital evolution of a LEO satellite for longer periods of time, using the semianalytical
theory of LEO satellite motion. Examples of applying this procedure to current geodetic satellites will be given.

1. INTRODUCTION

The motivation for this paper originated in the collaboration of
the author with space geodesists who needed a prediction of fu-
ture passes of Grace satellites through orbital resonances. This is
important, because degradation was observed in the gravity solu-
tion accuracy when the Grace satellites passed through the 61:4
resonance in September 2004 (Wagner et al., 2005). Estimating
the orbital evolution of LEO satellites (in low Earth orbits, i.e.
with heights under ca 2000 km) is specific, because in modelling
atmospheric drag there are important sources of uncertainties that
cannot be left aside, when doing a long-term prediction. Gener-
ally, we would like to show what the most important error sources
in modelling atmospheric drag are, and, more specifically, we
will present the results of the above-mentioned future prediction
problem using a semianalytical theory of motion for LEO satel-
lites.

1.1 Theories of motion for LEO satellites

To characterize the semianalytical method used to calculate the
long-term prediction, it is useful to schematically group theories
of motion for LEO satellites into (Hoots and France, 1987):

(i) Analytical – Historically, when the first artificial satellites ap-
peared in the late 1950’s, the methodology used in celestial me-
chanics was applied to describe their motion. While the analyt-
ical methods were rather successful when dealing with forces of
gravitational origin, an adequate analytical description of the at-
mospheric drag proved to be extremely difficult (Brouwer, 1963;
King-Hele, 1964, 1992). In the analytical approach, the forces
acting on LEO satellites were divided according to the theory of
perturbations. The dominant force in the vicinity of the Earth is
that induced by the geopotential monopole. The other forces are
small compared to this major acceleration, so the Kepler ellipse
of LEO satellites changes slowly in time under the influence of
perturbations. Among these, we find gravitational perturbations
induced by higher geopotential terms, action of Sun and Moon,
tides, etc. In the analytical way, one can approximately model
the nongravitational perturbations as well, for satellites under ca
400 km the dominant force being the atmospheric drag. In or-
der to be able to solve the equations of motion analytically, one
is forced to do many approximations. On the other hand, from
the computational point of view, having an analytical solution at
hand, we can jump from the initial conditions to the new state
vector at any time in a single leap, which makes the computation
extremely fast.

(ii) Numerical – In this case, no approximations to the formula-
tion of physical forces are necessary, but the orbital evolution is
time-consuming and computationally intensive. The accuracy of

the resulting orbit depends on that of the physical models used in
the calculation.

(iii) Semianalytical – In this case, the perturbation accelerations
are usually averaged over one revolution, which results in much
more speedy orbital evolution calculations than the numerical
ones. Approximations are necessary, but less stringent than for
analytical theories. Typical applications for semianalytical theo-
ries: long-term evolution, lifetime estimates.

1.2 Nongravitational forces

To get some idea about the nongravitational forces at LEO heights
and their magnitudes, we will look at Fig. 1. In the figure, there
are two revolutions of the Castor satellite (1975-039B) between
270 km at perigee and 1170 km at apogee (the bottom panel).
At the centre of mass of the satellite, a microaccelerometer was
placed, which measured the nongravitational forces that acted on
the satellite as it passed along its orbit. Near the perigee, un-
der ca 400 km, by far the largest acceleration is caused by the
atmospheric drag (see the top panel). The passes through the
perigee take place at midnight local time (the middle panel). As
the upper atmosphere absorbs the solar UV radiation, its density
increases during daytime by a factor of 2–4, the relative peaked-
ness of atmospheric drag is even more pronounced. The second
largest acceleration in Fig. 1 is the direct solar radiation pressure.
The inclination of the Castor’s orbital plane being 30◦, the satel-
lite enters the shadow of the Earth during each revolution. At
time 1900 s, it is clearly distinguishable that the satellite enters
the shadow, the direct solar radiation pressure steeply disappears.
The satellite is sunlit again at 3600 s, but there the drag is 20
times greater than the radiation pressure. Accelerations induced
by radiation pressures may significantly perturb the orbit, pro-
vided the satellites have very large surface and low mass, e.g.
balloon-like satellite Explorer 9. This is not the case of geodetic
satellites, which are usually designed to minimize the effects of
nongravitational forces. This dominance of atmospheric drag be-
low 400 km over other nongravitational forces is generally valid
for any LEO satellite down to 100–150 km, the lower edge of the
thermosphere, where nearly all the satellites fall out of orbit and
burn up.

2. ATMOSPHERIC DRAG

2.1 Effects on LEO satellites

We begin this section on the most important perturbing force at
LEO heights by showing its practical manifestations, which are
common to all LEO satellites. In Fig. 2 and 3 it is clear that under
the influence of atmospheric drag the satellite slowly spirals down
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Figure 1. Microaccelerometer measurements of nongravitational accelerations during two orbits of satellite Castor on 18 June 1976.
(Lack of data between 4300–4700 s is probably due to telemetry communication.)

towards the denser layers of the atmosphere. In the figures, it is
obvious that the apogee height reduces more quickly than that
at perigee. Due to exponential decrease in the air density and
higher speed at perigee, the satellite is dragged mainly around the
perigee, thus losing the velocity and energy for the next journey to
the apogee. In this way we may understand that atmospheric drag
secularly diminishes both semimajor axis a and eccentricity e, the
heights at perigee hp and apogee ha being in a first approximation
given by hp = a(1− e), ha = a(1+ e).

revolutions after 264 days
Earth surface

Decrease in height of the Castor satellite during its lifetime

first revolution (29/6/1975): 
hp=273 km, ha=1265 km

last revolution (8/2/1979): 
hp=204 km, ha=343 km

perigeeapogee

Figure 2. Decrease in height of the Castor satellite during its
lifetime due to atmospheric drag.
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Figure 3. Height at perigee and apogee of satellite Castor.

2.2 Uncertainties in the atmospheric drag

Atmospheric drag is a vector directed opposite to velocity v of the
satellite with respect to the atmosphere at rest, of the magnitude

aD =
1
2

CD
S
m

ρ v2 , (1)

where CD is the drag coefficient, (S/m) is the area-to-mass ra-
tio of the satellite and ρ the thermospheric density. To make an
overview of the sources of uncertainties in calculating the drag,
using small increments of quantities in Eq. (1) we will obtain for
relative uncertainties

∆aD

aD
=

∆CD

CD
+

∆(S/m)
(S/m)

+
∆ρ

ρ
+2

∆v
v

. (2)

In our present discussion we will leave aside the uncertainties in
the area-to-mass ratio and velocity, and describe in more detail
those in the drag coefficients and atmospheric density, which rep-
resent the specific problems connected with LEO satellites calcu-
lations.

2.3 Drag coefficient

The drag coefficient CD in Eq. (1) comprises the physics of the
interaction between the atmospheric constituents at a given height
and the material from which a surface element of the satellite is
made. Over the years since the beginning of the space age, many
theoretical models of this interaction, together with assumptions
about the underlying physical processes, were put forward, being
more or less based on the laboratory measurements. However,
it is now generally recognized that realistic in-orbit conditions
cannot be obtained in the laboratory (Moe and Moe, 2005), and
we are thus left with some ±5 % uncertainty in CD (King-Hele,
1992). As an illustration, in Fig. 4 two different models of CD
for spherical satellites are shown, together with the traditional
estimate CD = 2.2 computed by Cook (1965).

Taking into consideration the uncertainty in CD and the fact that
satellite surfaces are usually covered with different materials, each
having different CD, in practice one usually fits the ballistic coef-
ficient,

B≡CD
S
m

, (3)
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to the real data. It is clear that such a fitted parameter encom-
passes the uncertainties and mismodelling errors of the other terms
on the right-hand side of Eq. (2).

Figure 4. Examples of different theoretical drag coefficients for
spherical satellites (on the left a graph taken from Zarrouati,
1987, on the right from Moe and Moe, 2005).

3. ATMOSPHERIC DENSITY

This section will be devoted to the neutral atmospheric density, a
subject of intensive research (Proelss, 2004).

3.1 Thermosphere

As a sort of reminder, in Fig. 5 we can see the vertical profile of
atmospheric temperature, whose steep growth above 100 km and
very high temperatures gave the name to the region, where space
flights take place, to the “thermosphere”. Relevant to our present
discussion is the appreciable variation in the thermospheric tem-
perature in the course of the solar activity cycle. The same phe-
nomenon of very marked changes in the thermospheric density
may be seen in Fig. 6. As is clearly visible in the figures, such
changes due to the level of solar activity and to local time do
not exist near the Earth’s surface, and they were absolute surprise
at the beginning of the space age (King-Hele, 1992). The cause
thereof is the absorption of solar UV radiation, which is the main
energy source for the upper atmosphere and brings about its high
temperatures. Even the day-night cycle causes the thermospheric
density to vary with a factor of tens of percent (Fig. 6).
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Figure 5. Temperature altitude profile in the atmosphere.

3.2 Cycle of solar activity

The most problematic part of LEO orbital predictions is the cycle
of solar activity (CSA). In Fig. 7 we see the variations in solar ra-
dio flux at 10.7 cm that is used as a proxy for solar UV. While the
total radiation energy over all wavelengths coming from the Sun
to the Earth is virtually constant, 1.37 kW/m2, variations being
less than 0.3 % (Proelss, 2004), the solar UV radiation changes
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Figure 6. Variations in the atmospheric density within 0–800 km.

rather markedly following the 11-year CSA, which is well-known
from the study of sunspots since the 19th century. Problems arise,
when we want to predict the CSA, because, so far, solar physi-
cists are unable to theoretically predict the exact date of begin-
ning of the next cycle, nor its exact daily progress. For example,
the length of the cycles in Fig. 7 varies between 10.0–11.4 years
and their shape is different from one cycle to another, so any nu-
merical method to model them encounters difficulties. Another
problem is the variability of indices that are used to parameterize
the CSA (Fig. 8). The exact date of the CSA minimum and max-
imum varies according to the index used, thus creating another
type of uncertainty.
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Figure 7. Solar radio flux at 10.7 cm wavelength measured on the
ground. Satellites used for testing the STOAG theory.

Figure 8. Dates of maxima and minima of one 11-year solar
activity cycle using different indices: X-rays, 10.7 cm, sunspot
numbers (Lantos, 1997).
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3.3 Geomagnetic storms

Apart from the solar UV flux variations, other source of distinct
“peaks” in the thermospheric density is connected with the irreg-
ular variations of the terrestrial magnetic field, namely with the
geomagnetic storms (see Fig. 9). The geomagnetic storms are
induced by energetic particles from solar wind that enter the ge-
omagnetic field with high speeds and dissipate their extra kinetic
energy to heat. This creates higher atmospheric densities, hence,
a higher drag on satellites. Similarly to the solar UV radiation,
on a longer-term basis the arrival dates of these energetic parti-
cles are irregular and cannot be predicted.

During geomagnetic storms the energetic particles perturb the ter-
restrial ionosphere as well, in this way creating ranging errors in
the GPS positioning. Storms frequently cause rapid fluctuations
of the amplitude and phase of the GPS signals (scintillations),
which may prevent a position-fixing altogether (Proelss, 2004,
p. 445).

Figure 9. Planetary indices of geomagnetic activity (during flight
of CHAMP satellite). Minor geomagnetic storm is defined, when
29<ap<50, major for 50≤ap<100, severe for ap≥100.

3.4 Models of the thermospheric density

Similarly to the theories of motion, models of the thermospheric
neutral density may be grouped according to their physical con-
tent and computational demands. In orbital dynamics, the semiem-
pirical models (e.g. Jacchia, MSIS or DTM model series, for
references see Bezděk and Vokrouhlický, 2004) are used for the
most detailed description of the neutral thermosphere, and over-
simplified analytical models for quick analytical computations.
The semiempirical models are based on the physical assumptions,
some of which are rather simplified (e.g. the diffusive equilib-
rium of atmospheric components above 100 km), and take into
account the dynamic variation of the thermosphere due to solar
and geomagnetic activity. The numerical quadrature of the diffu-
sion equations can be very CPU demanding, so several mathemat-
ically efficient approximations to the semiempirical models have
been proposed (e.g. de Lafontaine and Hughes, 1983; Gill, 1996).
The analytical models of the thermosphere are usually based on
exponential or power function representation of the total density,
sometimes with a refinement e.g. for the Earth oblateness or the
altitude dependent scale height (ECSS, 2000; Hoots and France,
1987; King-Hele, 1964). Let us remark that there are also fully
physical models of the upper atmosphere (based on the transport
equations), but they are too complicated for use in orbital dy-
namics and show no quantitative advantage over semiempirical
models (Marcos, 2002).

Considering the accuracy of the neutral atmospheric density mod-
els, ∆ρ/ρ in Eq. (2), the answer is rather disappointing. Since
the late 1970’s up to now, the standard deviation of all the mod-
els remains around the 15 % level, on condition that we use the
measured data of solar and geomagnetic activity (Owens et al.,
2000). This uncertainty is, apart from that connected with CD,
another reason for the ballistic coefficient (3) to be fitted to the
orbital data, as was noted in Sec. 2.3.

4. THE STOAG THEORY

The STOAG (Semianalytic Theory of mOtion under Air drag and
Gravity) theory of motion for LEO satellites may be divided into
two parts: the perturbations due to drag are treated semianalyti-
cally, those due to the geopotential analytically. The theory orig-
inated from the semianalytical theory of motion of an artificial
satellite in the Earth atmosphere (Sehnal and Pospíšilová, 1991),
which was based on the specific formula of the thermospheric to-
tal density model TD88 (Sehnal and Pospíšilová, 1988). In prin-
ciple, the model TD88 is analytic (a sum of exponential func-
tions), but by means of an appropriate weighting of the base ex-
ponentials it takes into account the physical parameters having in-
fluence on the thermospheric density (solar flux, geomagnetic ac-
tivity, diurnal and seasonal variations, geographic latitude). The
TD88’s free parameters are adjustable to fit the model or real den-
sity data, so TD88 may be viewed as a mathematical approxima-
tion to virtually any semiempirical model. On the other hand, the
structure of TD88 is devised in such a way that it allows the oscu-
lating equations of motion to be analytically integrated over one
revolution of the satellite, which permits one to use the averaged
equations of motion.

The original version of the theory has been substantially extended.
In the present version, the theory comprises the long-period and
secular gravitational perturbations due to the zonal harmonics J2–
J9 of the geopotential as well as the long-period lunisolar per-
turbations. In order to test the theory predictions against pas-
sive spherical satellites, which often have near-circular orbits, the
theory uses the eccentricity nonsingular elements. For mathe-
matical definition and implementation comments regarding the
STOAG theory, please refer to the more extensive paper (Bezděk
and Vokrouhlický, 2004).

The STOAG theory may be applied in situations, where one needs
a quick orbital propagator for LEO objects, which are signifi-
cantly influenced by air drag, but undergo the long-term gravita-
tional variations as well (e.g. mission planning, lifetime predic-
tion, space debris dynamics). Compared to the analytical theo-
ries including air drag (e.g. Brouwer and Hori, 1961; King-Hele,
1964), the STOAG theory embraces the dynamics of the thermo-
sphere via the measured (or predicted) solar activity indices.

To validate the STOAG theory we compared its predictions with
passive (quasi)spherical satellites flown in the past (Fig. 7), when
solar and geomagnetic activity is known and the deviations of the
“predicted” and measured orbital elements come from the theory
itself. Each time we started with only one initial set of orbital el-
ements, which was then propagated further on. The unavoidable
uncertainties in the initial orbital elements and in the physical
characteristics of a satellite were relegated to the “CD-induced”
confidence interval, which we defined to quantify the uncertainty
in our prediction of the orbital elements evolution. An example
of a geodetic satellite used to validate the STOAG theory is in
Fig. 10.

For a detailed discussion, other test satellites and application ex-
amples, refer to Bezděk (2004); Bezděk and Vokrouhlický (2004).
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Figure 10. Long-term evolution of the orbital elements of geodetic satellite GFZ-1 (1995-020A). The steady decrease in the semimajor
axis is caused by the action of air drag, leading finally to the decay of the satellite out of its orbit. The inclination displays the overall
decrease caused by air drag, the long-period oscillations are predominantly induced by the lunisolar perturbations. Due to the low
eccentricity, the nonsingular elements were used throughout the whole lifetime, which couple the gravitational and drag perturbations
in the eccentricity and argument of perigee. The theory shows quite well the variations caused by the odd zonal harmonics of the
geopotential, leading to the libration of the argument of perigee around 90◦, combined with the action of the drag that modifies the
amplitude of the variations.

The online calculation, Fortran code as well as these references
are available on the website: http://www.asu.cas.cz/˜bezdek/den-
sity_therm/pohtd/.

5. PREDICTION OF PASSES THROUGH
RESONANCES FOR THE GRACE SATELLITES

Now we want to make a prediction of future orbital evolution
of Grace satellites in order to assess the dates of their passing
through important orbital resonances. For this purpose, we chose
the Grace A satellite. To model its motion using the STOAG the-
ory, we made several approximations. We take the satellite to be a
passively flying body with a constant ballistic coefficient. This is,
of course, a rather simplistic view, as the orientation of the satel-
lite is corrected continuously by the action of magnetic torque
rods and from time to time by thrusters (Herman et al., 2004), but
we will suppose that its surface-to-mass ratio with respect to the
direction of motion remains constant on average. As the orbital
data we used the two-line elements computed by GFZ Potsdam.

5.1 Test of the method for 2005

To have an idea of how good our prediction of the semimajor axis
evolution is, we made several tests, when we predicted the orbital
evolution of semimajor axis and compared the results with the
actual data. Here, we will show the prediction made in Feb. 2005
for the rest of the year, together with the actual orbital data.

In accordance with the discussion in Sec. 2.3, first we fitted the
ballistic coefficient B of the Grace satellite to the actual semima-
jor axis a data in 2004 (Fig. 11), and then we used it for estimating
the semimajor axis evolution in 2005. Each day, we adjusted B,
so that the change in a computed by the STOAG theory matches

the actual change taken from the two-line elements. We made
no optimization in the two-line elements, just linear interpolation
between the neighbouring element sets. In Fig. 11, sometimes the
daily values of the fitted B change wildly, as B fitted in this way
comprises all the uncertainties not only of the STOAG theory,
but of the measured data too. This interpretation is supported by
low value of the relative standard deviation of the average, 1.8 %,
and is in accordance with the above stated assumption about the
relatively constant ballistic coefficient of the satellite.
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Figure 11. Fitting the ballistic coefficient of the Grace A satellite
in 2004. The average value of B is 0.0037, relative std. deviation
34 %, relative std. deviation of the average 1.8 %.

To represent the future evolution of solar activity we used a model
with three levels of averaged flux F10.7 at 10.7 cm (Fig. 12). The
maximum and minimum curves were defined to be the upper and
lower limits of 3-month average flux values from the preceding
cycles (Fig. 7). In Fig. 12 it is evident that the new cycle will start
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somewhere around 2007–2009.
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The resulting curves for the semimajor axis evolution estimate
for 2005 are in Fig. 13. With the mean level of modelled so-
lar activity (SA) we used the mean fitted ballistic coefficient B
(Fig. 11). To have a reasonable uncertainty band, with the min-
imum SA level we took B reduced by 2 %, which corresponds
to the standard deviation of B, with the maximum SA level we
augmented B by 2 %. The limiting curves in Fig. 13 are in fact
the main result of any orbital evolution prediction. In this case,
the observed semimajor axis data fits rather well into the theoret-
ical uncertainty band, but one must not forget that we are always
dependent on the vagaries of the Sun in its UV activity.
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Figure 13. Testing the prediction of the orbital elements evolution
for Grace A (24 Feb–31 Dec 2005).

5.2 Passes of Grace A through resonances in the near future

In a way analogous to the 2005 test, we fitted the ballistic coef-
ficient to the 2005 orbital data, and made the subsequent calcu-
lations. In Fig. 14 we see the prediction for the semimajor axis
for period 2006–2009, together with approximate dates of passes
through resonances computed by the STOAG theory. Namely, the
first pass through an important resonance 107:7 falls to the pe-
riod 08/2007–03/2008 and 46:3 to 08/2009–03/2010. Not shown
in figures are the following resonances, 77:5 in 04/2010–08/2011
and 31:2 in 12/2010–02/2013, but at this time the Grace mission
will probably be no more in the active phase.

5.3 Uncertainty in lifetime predictions

In Fig. 15 we see the STOAG lifetime prediction. The wide range
in the lifetime prediction results primarily from our inability to
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Figure 14. Prediction of the orbital elements evolution by
STOAG theory for Grace A (Feb 2006–Dec 2009).

predict the date, when the new solar activity cycle begins. This
very large uncertainty will reduce considerably, when we know
the actual starting date of the new cycle. This statement is sup-
ported by numerical simulations of orbital lifetime predictions
made by Owens et al. (2000), where the authors conclude that
“the uncertainties associated with our current talent for estimat-
ing future solar activity significantly outweighs the sensitivity due
to even large errors in drag coefficient estimation”.

As another illustration of the uncertainty in the lifetime estimates,
we may take the Castor satellite (Fig. 3). Satellite Castor flew in
1975–1979, and as may be seen in Fig. 7, similarly to Grace, the
next cycle of solar activity began near the end of its flight. We
may repeat the “lifetime prediction” for Castor, as if we had no
knowledge about the actually observed F10.7 solar flux. For this
case of unknown both CD and F10.7 we get ±27 % uncertainty
in the theoretical lifetime prediction. When we use the actually
measured F10.7, the uncertainty persisting only in CD (in this
case we took ±5 %), the theory gives the length of lifetime with
±2.2 %.
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Figure 15. Prediction of orbital elements evolution by STOAG
theory for Grace A (Feb 2006 till the end of orbital lifetime).

6. CONCLUSIONS

The aim of this paper was to give the reader some insight into
the problem of predicting the orbital evolution for LEO satellites
over longer periods of time. At LEO heights, the main limit-
ing factor in the accuracy of such a prediction is the atmospheric
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drag. The uncertainties caused by drag lie on the one hand in
the not yet well modelled interaction between the satellite sur-
face and thermospheric particles, thus reducing the precision of
orbital estimates to the several percent order. But the largest un-
known is the future behaviour of solar activity, where so far we
are not able to predict the beginning nor the shape and duration
of the next cycle of solar activity with a necessary level of pre-
cision. The resulting uncertainties may climb to tens of percent
or more in the estimated lifetimes. The concrete motivation of
the paper was the estimation of future passes of Grace satellites
through orbital resonances. This problem was solved with the at-
tainable accuracy using the semianalytical theory of motion for
LEO satellites.
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