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Chapter 1Basi onepts and equationsPlasma means a partially or ompletely ionized gas, whih is eletrially neutral as a whole, andwhih onsists of eletrons, ions and neutral atoms. Furthermore the plasma, in the sense usedhere, is haraterized by so alled olletive behavior of its partiles. This aspet is used to beexpressed by the following onditions:a) The mean fore of near interations is muh less than that of distant olletive interationsof partiles Fnear � Fdist;b) the number of partiles in the so alled Debye sphere is large1n�3D � 1;where n is the plasma partile density and �D is the Debye length,) the thermal kineti energy KE is muh greater than potential energy PEKE � PE; 32kBT � e24��0�D :It means that the plasma is a suÆiently diluted and hot gas, whih harateristi length L ismuh greater than the Debye length (L� �D).Debye shieldingLet us assume a harge q0 at zero point of the referene system at r0 = 0. The potential of thisharge in free spae is '0(r) = q04��0 j r j ; (1.1)where �0 is the permittivity of the free spae.Now, let us onsider a test harge q0 surrounded by a neutral plasma (eletrons with the eletrondensity ne and temperature Te and heavy protons of the same density ne = np). Then thepotential ' an be determined from Poisson equationr2'(r) = �q0�0 Æ(r) + e�0 < �e >; (1.2)where the mean harge density is< �e >= ne exp� e'kBTe�� np: (1.3)
2



3Here kB is the Boltzmann onstant, and for eletrons the Maxwell-Boltzmann statistis (�exp(�q'=(kBT ))) is used. As mentioned above, in a plasma the kineti energy of eletronsis muh greater than their potential energy, and that is why the exponential funtion an beexpanded in a Taylor series and only two �rst terms an be used. Thus, the harge density inthe form of < �e >� nee'=(kBTe) an be put into Poisson equation whih an be written as�r2'0(r) + nee2'(r)�0kBTe = q0�0 Æ(r): (1.4)Solving this equation in polar oordinates (i.e. r2 ! �2�r2 + 2r ��r ) the solution is'0(r) = q04��0r exp(� r�D ); (1.5)where �D � s��0kBTnee2 �; (1.6)is the Debye radius. As seen the eletri �eld at distanes L � �D is e�etively shielded.Plasma osillationsIn a quasi-neutral eletron-ion plasma a relative displaement of eletrons in omparison withions auses the eletri �eld: E = nee��0 ; (1.7)where � is the displaement. Then the Newton fore equation gives the equation for osillationsof eletrons me d2dt2 � = �eE = �ne�0 e2�; (1.8)(where me is the eletron mass) with the harateristi frequeny alled eletron plasma fre-queny !2pe = nee2�0me : (1.9)Similarly, we an de�ne the proton plasma frequeny as!2pp = npe2�0mp ; (1.10)where mp is the proton mass, and so on.Equations desribing plasma proessesa) Kineti desriptionPlasma is fully desribed by a distribution funtion f(r;v; t). The distribution gives the numberof partiles whih are present in a unit volume of the 6-dimensional phase spae loated inoordinates r,v at time t. The distribution funtion is a solution of the Boltzmann equation�f(r;v; t)�t + v � rf(r;v; t) + Fm � �f(r;v; t)�v = ��f(r;v; t)�t �oll ; (1.11)



4 Chapter 1: BASIC CONCEPTSwhere m is the partile mass, F is the general fore, and in our ase usually in the formF = q(E+ v �B); (1.12)where E and B are the eletri �eld and magneti indution.The term on the right side of the equation (1.11) expresses e�ets of partile ollisions.Beause plasma an have many di�erent omponents (eletrons, protons, neutrals, ions of dif-ferent hemial elements), the Boltzmann equation should be solved for every single plasmaomponent and the interations between omponents should appear in the ollisional terms onthe right side of the individual Boltzmann equations. But, for many tasks some simpli�ationsare made, and e.g. only the Boltzmann equation for eletrons is solved.Furthermore, if the ollisional term is very low (e.g. if the plasma frequeny is muh greaterthan the ollision one; !pe � �) then suh a plasma is alled ollisionless and for its desriptionthe Vlasov equation is used�f(r;v; t)�t + v � rf(r;v; t) + Fm � �f(r;v; t)�v = 0; (1.13)For a full set of equations desribing a plasma behaviour the Maxwell equations need to beadded r�E = ��B�t r �E = 1"0 �e (1.14)r�B = �0j+ 12 �E�t r �B = 0where j is the eletri urrent density and �e is the harge density, whih an be expressed asfollows j =X� e� Z vf�d3v; (1.15)�e =X� e� Z f�d3v; (1.16)where the index � orresponds to individual plasma omponents.Fokker-Plank equationIf the partile ollisions are dominant then an evolution of the partile distribution funtion isdesribed by the Fokker-Plank equation. Let P (v;�v) be the probability that a test partilehanges its veloity v to v +�v in the time interval �t. Provided that the partile number isonserved, the veloity distribution at time t an be written asf(v; t) = Z f(v ��v; t��t)P (v ��v;�v)d3�v: (1.17)Noting that for small-angle deetions j �v j�j v j, the produt fP in Equation (1.17) an beexpanded into a Taylor series,f(v; t) = Z (fP ��t[�f�t ℄P ��v[rvfP ℄ + 12�vi�vj [ ��vi ��vj fP ℄ + :::)d3�v: (1.18)



5The Einstein onvetion has been introdued that the sums over the indies i and j have to beused if they appear together in the numerator and denominator, or as subsripts and supersripts.Sine the probability that some transition takes plae is unity, P is normalized toZ Pd3�v = 1: (1.19)We de�ne the average veloity hange per time interval �t:Z �vPd3�v �< �v >; (1.20)Z �vi�vjPd3�v �< �vi�vj > : (1.21)Exhanging integration and di�erentiation, the integral in Eq. (1.18) an be evaluated. The�rst term in the integrant anels with the left hand side of the equation. The remaining termsform the important Fokker-Plank equation,��f(v; t)�t �oll = �2�vi�vj �f < �vi�vj >2�t �� ��vi �f < �vi >�t � : (1.22)The possibility of negleting the higher-order terms in the expansion (1.18) is a property ofinverse-square law partiles having multiple ollisions. Equation (1.22) shows that the motionof partiles in veloity spae then an be visualized as a di�usion proess. Its right hand sidedesribes the temporal hange of a distribution of test partiles by multiple, small-angle ollisionproesses. It orresponds to the right hand side of the Boltzmann equation (1.11). The �rstterm in Equation (1.22) represents the three-dimensional di�usion of the test partile in veloityspae; the seond term is a frition, slowing down the test partile and moving it radially towardthe origin of veloity spae.b) Magnetohydrodynami desriptionFor many tasks in astrophysial plasmas the kineti approah is too omplex, in reality we do notneed to know distribution funtions of plasma partiles. In these ases the desription using themarosopi quantities as e.g. the mean plasma veloity and so on is suÆient. Mathematiallyit means that the integration of kineti equations in veloity spae is justi�able. Thus, theequations with the marosopi quantities (alled the magnetohydrodynami equations , MHDequations for short) an be obtained as the moments of the Boltzmann equation [BKE℄:Z [BKE℄d3v; (1.23)Z mv[BKE℄d3v; (1.24)Z 12mv2[BKE℄d3v: (1.25)Example of derivation of the �rst moment - �rst MHD equationLet us integrate the �rst moment��t Z fd3v + ��r Z vfd3v + qm Z (E+ v �B)�f�vd3v = Z ��f�t �oll d3v; (1.26)



6 Chapter 1: BASIC CONCEPTSwhere r � v = 0 was used in the seond term. Due to the partile number onservation theintegral of the ollisional term is zero. Furthermore, using the Gauss theorem and per partesintegration, the fore term an be expressed asZ (E+ v �B)�f�vd3v = E Z fdSv � Z f �(v �B)j�vj d3v; (1.27)where dSv is the surfae element in the veloity spae. The �rst part is zero beause f ! 0for j v j! 1, and the seond one is zero beause the (v �B)j do not onsist of vj . Thus, therelation (1.26) an be written as ��t Z fd3v + ��r Z vfd3v; (1.28)or ���t + div �u = 0; (1.29)where the density is � = R fd3v and the mean plasma veloity u = R vfd3v= R fd3v. This lastequation is known as the ontinuity equation or the mass onservation equation.MHD equationsMass onservation: d�dt � ���t + v � r� = ��r � v; (1.30)where d=dt is the onvetive derivative.Momentum onservation: �dvdt = �rp+ j�B+r � S+ Fg; (1.31)where p is the plasma pressure, j is the urrent density, B is the magneti indution, S is thevisous stress tensor, and Fg is the gravitation fore.Internal energy onservation:�dedt + pr � v = r � (� � rT ) + (�e � j) � j+Q� �QT ; (1.32)where e = p( � 1)�is the internal energy per unit mass, � is the thermal ondutivity tensor, T is the temperature,Q� is the heating by visous dissipation,  is the ratio of spei� heats, and QT = �2Q(T ) is theradiative energy loss, Q(T ) is a funtion desribing the temperature variation of the radiativeloss in the optially thin approximation.Faraday's equation: r�E = ��B�t : (1.33)



7Amp�ere's law: r�B = �j: (1.34)In omparison with Maxwell equations the displaement urrent term (� �E=�t) is negligiblein the MHD approximation.Gauss's law: r �B = 0: (1.35)Ohm's law: E0 = E+ v �B = �e � j: (1.36)Here E0 = E+v�B gives the Lorentz transformation from the eletri �eld (E) in a laboratoryframe of referene to the eletri �eld (E0) in a frame moving with the plasma. This Ohm's lawstates that it is the eletri �eld (E0) in the moving frame whih is proportional to the urrent.Equation of state: p = R�T = nkBT; (1.37)where R is the universal gas onstant, n is the partile density, and kB is Boltzmann's onstant.The density an be expressed as � = nm;where m is the mean partile mass. For a hydrogen plasma the pressure beomesp = 2nekBTand the plasma density is � � nemp;where mp is the proton mass.The above system of MHD equations onstitutes a set of 16 oupled equations for 15 unknownvariables (v;B; j;E; �; p; and T ). It seems that the system is over-determined. However, fromFaraday's law follows that if we take a divergene-free initial state, Gauss's law follows fromFaraday's equation(�=�(r �B) = �r � (r�E) = 0). In this sense Gauss's law is not neessary.



8 Chapter 1: BASIC CONCEPTSIndution equationIf we put E = �v � B + �ej from Ohm's law and j = r � B=�0 (where �0 is the magnetipermeability of free spae) from Amp�ere's law into Faraday's law we an write�B�t = r� (v �B)� �e�0r� (r�B): (1.38)Now, using the vetor formular�r�B = r(r �B)�r2Band Gauss's law the indution equation an be written as�B�t = r� (v �B) + �r2B; (1.39)where � = �e=�0 is the magneti di�usivity.Approximations of the indution equationNow, let us ompare terms on the right side of the indution equation by de�ning so alledmagneti Reynolds number:Rm = r� (v �B)�r2B � v0B0L0�B0L20 = L0v0� ; (1.40)where v0 is the harateristi plasma veloity and L0 is the harateristi length sale.As an be seen, two extreme regime of the indution equation an be onsidered. For proesseswith small harateristi veloities, i.e. v0 ! 0 and Rm ! 0, the indution equations gives aform of the di�usion equation �B�t = �r2B: (1.41)On the other hand, in a ollisionless plasma with �e = 0, i.e. for Rm � 1, the indution equationbeomes �B�t = r� (v �B): (1.42)



Chapter 2Magneti �eld struturesThe B and j desriptions of plasma proessesConsidering Ampere's law r�B = �j: (2.1)it looks that the desriptions using the magneti �eldB or the eletri urrent j as basi variablesare equivalent. But in reality only B is diretly measured on the Sun. Therefore, the desriptionwith B is preferred in solar irumstanes, and the eletri urrent is a variable derived fromthe magneti �eld.Based on magneti measurements at the photosphere the magneti �eld in the orona an beextrapolated (see Fig. 2.1). In model situation the magneti �eld was extrapolated even betweentwo stars (see Fig. 2.2). Commonly used methods are so-alled potential (j = 0 everywhere abovethe photosphere) and linear fore-free �eld extrapolations. But there are attempts to make so-alled non-linear extrapolations. One a rough method is desribed in the �le non-extra.pdf.Referene:Karlik�y, M.: 1997, Evolution of fore-free eletri urrents in the solar atmosphere, Astron.Astrophys. 318, 289-292.Basi struturesa) Gravitational strati�ationA omparison of the sizes of terms in the equation of motion�dvdt = �rp+ j�B+ �gshows that the inertial term on the left-hand side may be negleted when the ow speed is muhsmaller than both the sound speed (p0=�0)1=2, the Alfven speed B0=(��0)1=2 and the gravita-tional free-fall speed (2gl0)1=2 for a vertial sale-length l0. The result is a magnetohydrostatibalane O = �rp+ j�B+ �g (2.2)between the pressure gradient, the Lorentz fore and the gravitational fore. The full set ofequation is given by adding j = r�B=� (2.3)9



10 Chapter 2: MAGNETIC FIELD STRUCTURES

Fig. 2.1: The so-alled 'magneti arpet' showing observed photospheri magneti �eld and extrapolatedoverlying magneti �eld lines.

Fig. 2.2: Model magneti �eld for an RS CVn binary system in whih the two stars are tidally loked intorapid synhronous rotation. rB = 0; (2.4)



11� = mpkBT : (2.5)If gravity ats along the negative z-axis and s measures the distane along magneti �eld linesinlined at the angle � to the vertial, the omponent of Eq. (2.2) parallel to B is0 = �dpds � �g os �: (2.6)Sine Æs os � = Æz this beomes 0 = �dpdz � �g; (2.7)where p and � are funtions of z along a partiular �eld line. After substituting for � fromEq.(2.5) in Eq. (2.7) and integrating, we �ndp = p0 exp� Z z0 1�(z)dz; (2.8)where p0 is the base pressure (at z = 0) whih may vary from one �eld line to another; also�(z) = kBT (z)mg (2.9)is the pressure sale-height, whih represents the vertial distane over whih the pressure fallsby a fator e.For the partiular ase when the temperature is uniform along a �eld line (due to, for instane,the dominane of thermal ondution), � is onstant and Eq. (2.8) redues top = p0e�z=�: (2.10)) Struture of magneti ux tubesConsider a ylindrially symmetri ux tube whose magneti �eld omponents(0; B�(R); Bz(R)) (2.11)in ylindrial polar oordinates are funtions of R alone. The �eld lines are then helial and lieon ylindrial surfaes, as indiated in Fig. 2.3, while the eletri urrent omponents are, fromEq. (2.3) �0;� 1� dBzdR ; 1�R ddR (RB�)� : (2.12)Under the neglet of gravity the fore-balane equation then redues to (see the matrix withrows: (i,j,k),2.12,2.11) dpdR + ddR  B2� +B2z2� !+ B2��R = 0; (2.13)the seond term representing the magneti pressure and the third term the magneti tensiondue to the azimuthal omponent (B�) that enirles the axis.On eah ylindrial surfae the �eld lines have a onstant inlination, but this may vary fromone radius to another. The �eld lines are given byRd�B� = dzBz ; (2.14)



12 Chapter 2: MAGNETIC FIELD STRUCTURES

Fig. 2.3: The notation for a ylindrially symmetri ux tube of length 2L.and the amount by whih a given line is twisted in going from one end of the tube (length 2L)to the other is � = Z d� = Z 2L0 B�RBz dz; (2.15)or �(R) = 2LB�(R)RBz(R) ; (2.16)(4�L=� is alled sometimes the pith of the �eld and gives the axial length of a �eld line thatenirles the axis one, i.e. for � = 2� this length is 2L).Purely axial �eldWhen no azimuthal omponent (B�) is present, Eq. (2.13) redues toddR  p+ B22�! = 0; (2.17)with solution p+B2=(2�) = onstant, so that the total pressure (gas plus magneti) is onserved.Purely azimuthal �eld



13When the axial omponent vanishes, equation Eq. (2.13) beomesdpdR + ddR  B2�2�!+ B2��R = 0; (2.18)where, aording to Eq. (2.3), B� is related to the urrent by (2.12)jz = 1�R ddR (RB�): (2.19)If, in partiular, the urrent ows with uniform total value I within a ylinder of radius a, anintegration of Eq. (2.19) yields � Z jzdS = Z r�BdS;�I R2a2 = 2�RB�(R);B� = �IR2�a2 ; R < a; (2.20)B� = �I2�R;R > a;assuming B� to be �nite and ontinuous. The orresponding plasma pressure results fromintegrating Eq. (2.18). Assuming that it takes the value p1 outside the urrent olumn, we �nddpdR = � ddR  12� �2I2R24�2a4 !� 1�R �2I2R24�2a4 jRa ;p = p1 + 14�(I=(�a2))2(a2 �R2); R < a; (2.21)p = p1; R > a:The magneti �eld lines are shown in Fig. 2.4. Within the ylinder of radius a B� inreaseslinearly with R, while the gas pressure dereases, so that the outwards gas pressure is balanedby inwards magneti pressure and tension fores. Outside the ylinder the pressure is uniformand the magneti �eld is potential, so that the outwards magneti pressure and inwards tensionbalane one another.In the laboratory, a plasma on�guration in whih the urrent is axial and the magneti �eldazimuthal is known as a linear pinh. A simple relation may be derived in this ase between theurrent I � Z R00 jz2�RdR (2.22)owing through the plasma olumn (of radius R0) and the numberN � Z R00 n2�RdR (2.23)of partiles per unit length of the olumn. Eq. (2.18) may �rst be multiplied by R2 andintegrated to give R2dp = �dR R2B�� dB�dR + B2�R� ! ;



14 Chapter 2: MAGNETIC FIELD STRUCTURESR2dp = �RB�� (RdB� +B�dR) = �RB�� d(RB�);Z R00 R2dp = � Z R00 RB�=�d(RB�): (2.24)Then, assuming that the plasma pressure vanishes at R0 and the temperature (T = p=(nkB)) isuniform aross the olumn, an integration by parts of the left-hand side together with the useof Eq. (2.19) on the right-hand side yields the expressionj R2p jR00 � Z R00 2RpdR = � j (RB�)22� jR00 = R20B2�2� ;Z R00 2RnkBTdR = kBTN� ;I = Z R00 2�R 1�R d(RB�)dR dR = Z R00 2�� d(RB�) = 2�� R0B�;I2 = (8�=�)kBTN; (2.25)known as Bennett's relation.

Fig. 2.4: The ourely azimuthal magneti �eld lines in a setion aross a olumn of uniform urrent and radiusa.Fore-free �eldsI. Linear �eldIn the absene of pressure, Eq.(2.13) redues toddR  B2� +B2z2� !+ B2��R = 0: (2.26)



15Here, either B� or Bz may be presribed and the other dedued. For the so-alled 'onstant-�'�eld one assumes that �j = �B, where � is uniform. After using Eq. (2.3), the �-omponent ofthis beomes �j� = �B�; �dBzdR = �B�: (2.27)Finally, an elimination of B� between Eqs. (2.26) and (2.27) yields Bessel's equation whosesolution subjet to Bz = B0 and dBz=dR = 0 at R = 0 isddR � 12��2 (dBzdR )2 + 12�B2z�+ �dBzdR �2 1�R�2 = 0;R2B00z +RB0z +R2�2Bz = 0; Bessel0s equationB� = B0J1(�R); Bz = B0J0(�R); (2.28)where J0; J1 are Bessel funtions.II. Nonlinear �eldsAn easy way to generate solution to Eq. (2.26) is to hooseB2 = f(R); (2.29)and then Eq. (2.26) gives B2� = �12R dfdR (2.30)and B2z = B2 �B2�: (2.31)The restritions that B2� and B2z be positive imply that df=dR is negative and that f approaheszero slower than R�2 as R ! 1. The limiting ase f = R�2 gives the purely azimuthal �eldR�1�.Another simple example of a fore-free �eld is the 'uniform-twist' �eld, for whih � is (given byEq. (2.16)) is onstant and the �eld omponents areB� = B0�R=(2L)1 + �2R2=(2L)2 ; Bz = B01 + �2R2=(2L)2 : (2.32)They have the property that �eld lines at di�erent radii are twisted through the same angle, sothat the whole tube is twisted like a rigid body.Basi topology of twisted magneti on�gurationsLet us onstrut a simple magneti loop as presented in Fig. 2.5. Suh a on�guration resemblesto that in the solar atmosphere. The z-axis points in the vertial diretion and the plane z = 0represents the photosphere.The whole magneti �eld is obtained here by superimposing three omponents denoted byBI ;Bqand B�. The �rst omponent BI is the �eld reated by a ring urrent I uniformly distributed
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Fig. 2.5: The magneti �eld under study is modelled by a fore-free irular ux tube with the total urrentI, a pair of magneti harges �q, q and a line urrent I0. Below the photospheri plane z = 0 this on�gurationhas no real physial meaning: it is used only to onstrut the proper magneti �eld in orona.over its irular ross setion of radius a. The plane of symmetry of the ring oinides withthe plane x = 0, while its axis of symmetry is parallel to the x-axis and submerged under thephotosphere by a depth d, so that in orona only an ar of the ring with major radiusR is present.The seond omponent Bq is reated by the leading and following spots of the modelling ativeregion, whih are represented here by two harges �q and q lying on the axis of symmetry of thering from both sides of the plane x = 0 on the distane L. The third omponent B� is reatedby a line urrent I0 owing exatly along the axis of symmetry of the ring. In this model, ofourse, only the �eld above the photospheri plane z = 0 has a real physial meaning, while thesub-photospheri urrents and soures play an auxiliary role in onstruting the on�guration.One an ignore its sub-photospheri part and regard that the oronal fore-free �eld is in fatdetermined by the vertial omponents of the �eld Bq + BI + B� and urrent density on thephotosphere. The region oupied by the ring urrent is further assumed to be thin, so that theequilibrium of this urrent an be investigated by using appropriate asymptoti expansions insmall parameters a=R and a=L. The external equilibrium here orresponds to the equilibriumof a ring urrent in an axisymmetri potential �eld. Due to the present axial symmetry, therespetive equilibrium ondition is the same for eah element of the ux tube and, is redued tothe balane of only two fores: the Lorentz fore Fq aused by interation of the urrent I withthe �eld Bq and the Lorentz self-fore FI resulting from the urvature of the tube axis. Bothfores at along the normal n to thin axis and an be written asFq = � 2qLIn(R2 + L2)3=2 ; (2.33)FI = �0I24�R �ln Ra + ln8� 3=2 + li=2�n; (2.34)where li is the internal self-indutane per unit length of the tube (li = 1=2 in our ase).From the fore balane Fq + FI = 0 we obtain the total equilibrium urrentI = 8�qLR(R2 + L2)�3=2�0[ln(8R=a)� 3=2 + li=2℄ ; (2.35)whih ows in the orona.



17Now, let us onstrut approximate analytial expressions for the magneti �eld. We use thetubal system of oordinates (�; �; �),� is the distane from the axis of the tube and � is the anglebetween radius � and the plane symmetry x = 0, while � measures the angular ar length of thetube from the positive diretion of y-axis. Sine the ux tube in our model is assumed to be thinin on�guration with its radius of urvature R and the harateristi size L, the orrespondingfore-free ondition in zero order approximation by small parameters a=R and a=L is the sameas for the straight tube. So in the above tubal oordinates the fore-free ondition an be writtenat 0 < � � a as follows �2 ���(B2�in +B2�in) +B2�in � 0; (2.36)where the azimuthal magneti �eld omponentB�in � �0I�2�a2 (2.37)orresponds to the uniformly distributed toroidal urrent I. These equations give the toroidal�eld inside the tube (when we put Eq. 2.37 into Eq. 2.36)B�in � sign(I0) B2�R + �20I22�2a4 (a2 � �2)!1=2 ; (2.38)where the toroidal �eld on the surfae of the tubeB�R � �0I02�R (2.39)is followed from the appropriate approximation of the external toroidal �eldB�ex = �0I02� (y2 + (z + d)2)�1=2; (2.40)whih is produed by the sub-photospheri line urrent I0.Both internal and external toroidal �elds an be sewed by using the following formula:B� = �0I02� [ 1R2 + 2�(a� �)a2 I2I20 (1� �2a2 )℄1=2� + (2.41)�0I02� [y2 + (z + d)2℄�1=2 �R�1℄�;where � = �0;�z + dr? ; yr?� ; (2.42)� = [x2 + (r? �R)2℄1=2; (2.43)r? = [y2 + (z + d)2℄1=2; (2.44)and �(X) stands for the Heaviside funtion suh that � = 1 if X > 0 and � = 0 otherwise. Theequation desribes the toroidal magneti �eld inside the ux tube only in zero order approxima-tion by small parameters a=R and a=L, whih is suÆient for determination of the topology inour on�guration.



18 Chapter 2: MAGNETIC FIELD STRUCTURESRemark: Thus, outside the loop (� = 0)B� = �0I02� [ 1R + [y2 + (z + d)2℄�1=2 �R�1℄�;B� = �0I02� [y2 + (z + d)2℄�1=2�;and inside the loop (� = 1)B� = �0I02� [ 1R2 + 2a2 I2I20 (1� �2a2 )℄1=2�;B� = �0I02� [ 1R2 + 2a2 I24�2R2B2�R=�20 (1� �2a2 )℄1=2�;B� = [B2�R + �20I22�2a4 (a2 � �2)℄1=2�;whih orresponds to previous formulae.We also determine with the same auray, the poloidal magneti �eld everywhere in the oronalvolume. Inside the ux tube Eq. (2.37) yields it with the desired auray, outside the tube itis approximately a superposition of the point soures �eldBq = q� r+j r+ j3 � r�j r� j3� ; (2.45)r� = (x� L; y; z + d); (2.46)and of the �eld BIex produed by the line urrent I in the ring of radius R. In order to deriveBIex and the proper sewing funtion BI , it is helpful to represent the magneti �eld in termsof the vetor potential, whih due to the symmetry of our on�guration about x-axis an beredued to only one non-vanishing �-omponent AI(r?; x), so thatBI = r� (AI�) = ��AI�x r?r? + ��AI�r? + AIr?�x: (2.47)Remark: Generally, B = B�� +Br? r?r? +Bxx:Due to ylindrial symmetry BI = Br? r?r? +Bxx;and thus BI an be express as BI = r� (AI�):Coordinate vetors are:r?r? = (0; yr? ; z + dr? ); � = (0;�z + dr? ; yr? ); x = (x; 0; 0): (2.48)



19Then using standard vetor operation r� (AI�) in ylindrial oordinates we obtain the abovementioned Eq. (2.47).From here and equation (2.37) one an derive AI inside the tubeAIin � �0I2�  onst� �22a2! : (2.49)BIin � �0I2� �� 2x2a2 r?r? � 2(r? �R)2a2 x� ; onst so AI=r? ! 0;j BIin j= �0I2�a2 (x2 + (r? �R)2)1=2:Outside the ux tube, AI is well approximated by the potential of the ring determined as:Generally we an writeAIex � �0IR4� Z 2�0 os �0d�0(R2 + r2D � 2RrD sin � os �0)1=2 ; (2.50)where R is the radius of the ring urrent, rD is the distane from the entrum of the ring tothe position, where the vetor potential is alulated. Thus, rD = qr2? + x2 and rD sin � = r?.Then we may write AIex � �0IR4�(R2 + r2? + x2)1=2 Z 2�0 os �0d�0(1� v os �0)1=2 ; (2.51)where v = 2r?RR2 + r2? + x2 : (2.52)The above integral an be expressed in terms of the omplete ellipti integrals of the �rst andseond kinds, K(k) and E(k), as follows: First, in denominator of Eq. 2.51 we add 2Rr?�2Rr?AIex � �0IR4�(R2 + r2? + x2 + 2Rr?)1=2 Z 2�0 os �0d�0(1� 2�2Rr?R2+r2?+x2+2Rr? 1+os �02 )1=2 ;Then we designate k2 = 4Rr?R2 + r2? + x2 + 2Rr? ;and use os2 �2 = 1 + os �02 ;and �=2 = H, so the vetor potential isAIex � �0IR4�(R2 + r2? + x2 + 2Rr?)1=2 Z �=20 4 os 2HdH(1� k2 os2H)1=2 ;



20 Chapter 2: MAGNETIC FIELD STRUCTURESwhere the multipliation fator 4 in integration is due to a hange of integration limits. Now,using os 2H = os2H � sin2H and de�nitions of the omplete elliptial integralsK = Z �=20 d�p1� k2 sin2 �; (2.53)E = Z �=20 q1� k2 sin2 �d�;we haveAIex � �0IR4�(R2 + r2? + x2 + 2Rr?)1=2 4� 1k2 (K �E)� 1k2 (E � (1� k2)K� ;(in integrations we an replae p1� k2 sin2 � by p1� k2 os2 �), and after a simple manipula-tion the �nal formula for the vetor potential isAIex(x; r?) � �0I2� s Rr?A(k); (2.54)in whih A(k) � k�1[(2� k2)K(k)� 2E(k)℄ (2.55)and k � 2s r?R(r? +R)2 + x2 : (2.56)There is a small mismath at � = a between AIex and AIin, whih an be eliminated by using,instead of AIin, the following expression:AIin � �0I2� s Rr? [A(ka) +A0(ka)(k � ka)℄; (2.57)where A0(k) � ddkA(k) = (2� k2)E(k) � 2(1 � k2)K(k)k2(1� k2) (2.58)and K 0 = (E=(1 � k2)�K)k ; E0 = E �Kk ;and ka = 2s r?R4r?R+ a2 (2.59)is the value suh that k = ka at � = a and always ka < 1, so A(ka) and A0(ka) are regularfuntions of r?. One an show that in zero order approximation by a=R Eq. (2.57) reduesto Eq. (2.49), while AIin and AIex at � = a are equal to eah other together with their �rstderivatives, so the orresponding sewing funtion isAI = �(a� �)AIin + �(�� a)AIex: (2.60)



21By using this and Eq. (2.47) one an derive now an expliit formula for BI and so for the wholemagneti �eld.ReferenesPriest, E.R.: 1982, Solar Magnetohydrodynamis, D. Reidel Publ. Comp., Dordreht, Holland.Titov, V.S., Demoulin, P.: 1999, Astron. Astrophys. 351, 707.



Chapter 3Magneti �eld reonnetionDi�usion in the urrent sheet

Fig. 3.1: The magneti �eld (B) as a funtion of distane (x) in a 1-D urrent sheet that is di�using from sheetof zero thikness initially, for times t = 0; t1; t2, where 0 < t1 < t2.Let us onsider a urrent sheet desribed asB(x; 0) = B0; x > 0; (3.1)B(�x; 0) = �B(x; 0):and the plasma veloity v = 0 everywhere in the system. Then the indution equation is reduedto the di�usion one: �B�t = ��2B�x2 ; (3.2)whose solution is B(x; t) = 2B0p� Z x=p4�t0 e�u2du: (3.3)
22



23Solution (3.3) has the form shown in Fig. 3.1 and may be veri�ed a posteriori by substituting itbak into Eq. (3.2).Remark: ��� Z �2(�)�1(�) f(x; �)dx = Z �2(�)�1(�) �f(x; �)�� dx+ �02f(�2(�); �) � �01f(�1(�); �): (3.4)The magneti �eld di�uses away in time at a speed �=l, where the width (l) of the sheet is ofthe order of (�t)1=2 and so inreases in time. The resulting magneti �eld strength at a �xedposition dereases with time, so the �eld is annihilated. The total magneti ux (R1�1Bdx)remains onstant (namely zero) and the total urrentJ = Z 1�1 jdx = 1� Z 1�1 �B�x dx = 2B0� (3.5)is onserved, sine it simply spreads out in spae. However, the magneti energy dereases intime at a rate ��t Z 1�1 B22� dx = Z 1�1 B� �B�t dx: (3.6)Substituting for �B=�t from Eq. 3.2 and integrating by parts, we �nd that this beomesZ 1�1 B�� �2B�x2 dx = 1�2� �j B�B�x j1�1 � Z 1�1(�B�x )2dx� : (3.7)Sine �B=�x remains equal to zero at in�nity, the �rst term on the right vanishes, and, sinethe eletri urrent is j = ��1�B=�x, we �nally have��t Z 1�1 B22� dx = � Z 1�1 j2� dx: (3.8)In other words, magneti energy is onverted entirely into heat by ohmi dissipation (j2=� perunit volume).Conept of frozen ux and �eld-line motionThe term "magneti reonnetion" is intimately lined to the onept of �eld-line motion. In aplasma with a very small resistivity the Ohm law beomes E + v � B = 0, and the indutionequation redues to �B�t = r� (v �B): (3.9)Then, if we onsider a urve C (bounding a surfae S) whih is moving with the plasma, ina time dt an element ds of C sweeps out an element of area v � dsdt. The rate of hange ofmagneti ux through C isddt ZS B � dS = ZS �B�t � dS+ ZC B � v � ds: (3.10)As C moves, so the ux hanges, both beause the magneti �eld hanges with time and beausethe boundary moves in spae. By setting B �v�ds = �v�B �ds and applying Stokes theoremwe obtain ddt ZS B � dS = ZS ��B�t �r� (v �B)� � dS; (3.11)
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Fig. 3.2: Magneti ux onservation: if a urve C1 is distorted into C2 by plasma motion, the ux through C1at t1 equals the ux through C2 at t2.

Fig. 3.3: Magneti �eld-line onservation: if plasma elements P1 and P2 lie on a �eld line at time t1, then theywill lie on the same line at a later time t2.whih vanishes in the ideal limit. Thus, the total magneti ux through C remains onstant asit moves with the plasma. In other words, we have proved magneti ux onservation, namelythe plasma elements that initially form a ux tube ontinue to do so at all later times (Fig. 3.2).There is also magneti �eld line onservation, namely that, if two plasma elements lie on a �eldline initially, then they will always do so (Fig. 3.3).Line onservation an be proved as follows. Applying the vetor identity (r � (a � b) =(b � r)a� (a � r)b+ a(r � b)� b(r � a)) to the ideal indution equation gives�B�t = (B � r)v � (v � r)B�B(r � v): (3.12)



25Using the mass ontinuity equation to eliminate r � v, we then obtaind�dt = ���t + v � r� = ��r � v;�B�t + (v � r)B = (B � r)v �B(r � v);dBdt � B� d�dt = (B � r)v;ddt �B� � = �B� � r�v; (3.13)where d=dt = �=�t + v � r is the total or onvetive derivative. To see how this result leads tothe onlusion that the �eld lines are "frozen" to the plasma, onsider an element segment Ælalong a line moving with the plasma. If v is the plasma veloity at one end of the element andv + Æv is the veloity at the other end, then the di�erential veloity between the two ends isÆv = (Æl � r)v. During the time interval dt, the segment Æl hanges at the ratedÆldt = Æv = (Æl � r)v: (3.14)Sine this equation has exatly the same form as Eq. (3.13) for the vetor B=�, it neessarilyfollows that, if Æl and B=� are initially parallel, then they will remain parallel for all time.Advetion of magneti �eld linesIf Rm � 1, plasma an move freely along magneti �eld lines, but in motion perpendiular tothem they are dragged with the plasma or vie versa.As an example (Fig.3.4), onsider the e�et of a owvx = �v0xa ; vy = v0ya (3.15)on a �eld that is initially B = B0 os xay; t = 0 (3.16)between x = �12�a and x = 12�a. The equations of the streamlines (namely, xy=onstant)are obtained from dy=dx = vy=vx = �y=x (Remark: dy=y = �dx=x; ln y = � lnx+ C, xy =onstant). These are retangular hyperbolae (Fig. 3.4) with inow along the X-axis and outowalong the y-axis when v0 > 0.The veloity �eld orresponds to a hydrodynami stagnation-point ow. The e�et of this owon the magneti �eld is to arry the �eld lines inwards from the sides and aumulate them nearx = 0, inreasing the �eld strength there. Sine the omponent (vx) of the veloity perpendiularto the �eld lines is onstant along a partiular �eld line (x= onstant), the �eld lines are notdistorted but remain straight as they ome in.Now, the y-omponent of the indution equation is �B=�t = (r� (v�B))y = ��(vxB)=�x or�B�t � v0xa �B�x = v0Ba ; (3.17)
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Fig. 3.4: A sketh of the magneti lines (thin-headed arrows) and streamlines (thik-headed arrows) at t = 0for j x j< �a=2.

Fig. 3.5: (a) Charateristi urves x = x� exp(�v0t=a); (b) the solution for B as a funtion of x for severaltimes.and this determines B(x; t). In order to solve suh a partial di�erential equation, we onsiderharateristi urves in the xt-plane, whih are de�ned asdxdt = vx = �v0xa ; (3.18)



27with solution x = x�e�v0t=a; (3.19)where x = x� at t = 0. We wish to determine B(x; t) at every point of the xt-plane, and theelegane of onsidering harateristi urves, x = x(t) given by Eq. (3.19) (Fig. 3.5a), is that onsuh urves B(x(t); t) has the derivativedBdt = �B�t + dxdt �B�x = �B�t � v0xa �B�x ; (3.20)by Eq. (3.18), or, from Eq. (3.17), dB=dt = v0B=a. In other words, on the harateristi urveswe have a simple ordinary di�erential equation to solve in plae of Eq. (3.17): the solution isB = onstant ev0t=a or, sine x = x� and B = B0 os(x�=a) at t = 0, we haveB(x; t) = B0 os(x�=a)ev0t=a: (3.21)However, in this solution x� is a onstant whih we have introdued for onveniene and whihwas not present in the initial statement of the problem, so we should eliminate it by Eq. (3.19),with the �nal result B(x; t) = B0 os�xaev0t=a� ev0t=a: (3.22)This solution is plotted in Fig. 3.5b against x for several times. It an be seen that the �eld doesindeed, as expeted, onentrate near x = 0 as time proeeds. The �eld strength at the originis B(0; t) = B0ev0t=a, whih grows exponentially in time (or dereases if the ow is reversed bytaking v0 < 0).Stagnation-point ow model

Fig. 3.6: (a) Stagnation-point ow reating a steady urrent sheet (shaded). (b) Magneti �eld pro�le, withsmall-x and large-x approximations shown as dashed urves.The standard equations for 2-D steady-state inompressible ow areE+ v �B = �r�B; (3.23)
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�(v � r)v = �r p+ B22�!+ (B � r)B� ; (3.24)where r �B = 0;r � v = 0; j�B = (r�B)�B=� = (B � r)B=��r(B2=(2�)); (3.25)and the omponents vx; vy; Bx; By depend on x and y alone. Faraday's law (r�E = 0) impliesthat �E=�y = �E=�x = 0, so that E = Ez is uniform.Considering a steady-state ow vx = �v0xa ; vy = v0ya ; (3.26)for whih r�v = 0. The steady-state ontinuity equation (v �r)�+�(r�v) = 0 then redues to(v � r)� = 0, whih implies that the density � is uniform if it is onstant at the inowing sides.The ow vanishes at the origin and therefore represents an inompressible, stagnation-pointow.Suppose now that the magneti �eld lines are straight with B = B(x)y and they reverse sign atx = 0. Then in Ohm law (Eq. 3.23), both v�B;r�B, and therefore E are direted purely inthe z-diretion and in the present ase it redues toE � v0xa B = �dBdx : (3.27)From this equation the magneti �eld B an be estimated in two extreme ases as (see alsoFig.3.6): B � Eav0x; x� 1; (3.28)B � Ex� ; x� 1: (3.29)Steady reonnetion: lassial solutions

Fig. 3.7: Breaking and reonnetion of magneti �eld lines.In most of the universe the magneti Reynolds number is very muh larger than unity and sothe magneti �eld is frozen to the plasma, but in very small singular regions it an slip (di�use)



29through the plasma (Fig. 3.7). There are several important e�ets of this loal proess:a) Changes of global topology and onnetivity of �eld lines, whih a�et the paths of fast par-tiles and heat, sine these travel mainly along �eld lines.b) Conversion of magneti energy to heat, kineti energy and fast partile energy.) Creation of large eletri urrents, large eletri �elds, shoks, all of whih may help to ael-erate fast partiles.a) Formation of a urrent sheetX-type ollapse

Fig. 3.8: Collapse of the �eld near an X-point.There are several ways of forming urrent sheets. One is through the ollapse of the �eld nearan X-type neutral point suh as Bx = y;By = x; (3.30)whih has �eld lines y2 � x2 = onstant (dy=dx = By=Bx = x=y). The �eld is in equilibriumsine the eletri urrent ��1(�By=�x� �Bx=�y) vanishes and so there is a balane everywherebetween the magneti pressure fore (P ) ating inwards and the magneti tension fore (T )ating outwards (Fig. 3.8a).Suppose now the �eld is distorted to Bx = y;By = �2x, where �2 > 1, with �eld lines y2��2x2 =onstant, as skethed in Fig. ( 3.8b), and eletri urrent j = (�2 � 1)=�.Physially, we expet an inwards fore on the x-axis sine the tension fore is smaller and themagneti pressure fore larger, whereas along the y-axis we expet an outwards fore sinethe tension fore is inreased by the larger urvature. Mathematially, the magneti fore hasomponents j�B = �(�2 � 1)�2x� x+ (�2 � 1)y� y: (3.31)



30 Chapter 3: MAGNETIC FIELD RECONNECTIONThese at in suh a sense as to inrease the perturbation and so the initial equilibrium is unstable.Current sheet formation: desription by omplex variables

Fig. 3.9: Creation of a urrent sheet from an X-point on�guration.Suppose the soures of the magneti �eld move slowly together and drive the formation of a seriesof equilibria ontaining a urrent sheet (Fig. 3.9a). Initially Bx = y;By = x. Then the questionis how to desribe the resulting equilibrium ontaining a urrent sheet as in Fig. 3.9b. Outsidethe sheet, where the urrent vanishes, the magneti �eld satis�es r�B = 0 and r �B = 0 or,in two dimensions, �By�x � �Bx�y = 0; �Bx�x + �By�y = 0: (3.32)Now, it may be shown as follows that ifBy + iBx = f(z) (3.33)is any analyti funtion of the omplex variable z = x + iy, then Eq. (3.32) is automatiallysatis�ed. We are familiar with the fat that the derivative f 0(x) of a funtion of x exists if thegradient at x has the same value whether x is approahed from the left or the right. In a similarway if f(z) is analyti the gradient has the same value when z is approahed from any diretion,in partiular keeping y onstant (so that z = x) and keeping x onstant (so that z = iy). Inother words ��x(By + iBx) = 1i�y (By + iBx); (3.34)or, by equating real and imaginary parts, we obtain Eq. 3.32 as required. Thus, we an treatthe urrent sheet as a ut in the omplex plane and the objet is to �nd a funtion f(z) whihhas suh a ut.Now the initial state (3.33) has By+iBx = z and when a sheet strethes from z = �iL to z = iLwe may use By + iBx = (z2 + L2)1=2; (3.35)



31whih behaves like z when z � L and redues to z when L = 0 (for z = 0; By = L;Bx = 0). Thusthe evolution through a series of equilibria with a slowly growing sheet may simply be modelledby letting L slowly inrease in value in (3.35). The �eld has limiting �eld lines (separatries)through the ends of the sheet, �eld lines whih are inlined to one another at the ends of thesheet by 2�=3. This may be shown by noting that near the upper end of the sheet at z = iL,(3.35) beomes approximately By + iBx = p(iL+ Z)2 + L2 � p2iLZ1=2 where Z = z � iL.This may be written as By + iBx = dadZ ; (3.36)where a = p2iL23Z3=2 = p2L23ei�=4R3=2e3i�=2; (3.37)and the omplex number Z has been written in polar form as Z = Rei�; (pi = (ei�=2)1=2).However, if A is the real part of a, then (3.36) implies that By = �A=�X;Bx = ��A=�Y , whereX and Y are the real and imaginary parts of Z and the magneti �eld lines are given bydYdX = ByBx = ��A=�X�A=�Y ; �A�X dX + �A�Y dY = 0: (3.38)In other words dA = 0 and so A = onstant.By taking the real part of (3.37) we an see thatA = p2L23R3=2 os�3�2 + �4� : (3.39)Thus the partiular �eld lines A = 0 are given by3�2 + �4 = ��2 ; �2 ; 3�2 ; 5�2 ; (3.40)and so � = ��=2; �=6; 5�=6 or 3�=2. In other words the urrent sheet (at ��=2 or 3�=2) isinlined to the separatries (�=6 and 5�=6) by 2�=3, as required.b) Sweet-Parker model

Fig. 3.10: Sweet-Parker reonnetion.This model onsists of a simple di�usion region of length 2L and width 2l between oppositelydireted �elds. Let us suppose the input ow speed and magneti �eld are vi; Bi. (Fig.3.10).



32 Chapter 3: MAGNETIC FIELD RECONNECTIONThe eletri urrent is about j � Bi=(�l) and so the Lorentz fore along the sheet is (j�B)x �jB0 = BiB0=(�l). This fore aelerates the plasma from rest at the neutral point to v0 overdistane L and so, by equating the magnitude of �(v � r)vx to the above Lorentz fore, we have�v20L � BiB0�l : (3.41)From r �B = 0 follows B0l � BiL ; (3.42)and so the right-hand side of Eq.3.41 may be written as B2i =(�L) and we havev20 = B2i�� = v2Ai; (3.43)where vAi is the Alfven speed at the inow.Now a question is: how fast an �eld lines and plasma enter the di�usion region. Note that fora steady state the plasma must arry the �eld lines in the same speed that they are trying todi�use outward, so that vi = vDiffuse = �l : (3.44)Conservation of mass implies that the rate (4�Lvi) at whih mass is entering the sheet mustequal the rate(4�lv0) at whih it is leaving, so thatLvi = lvAi: (3.45)The width l may be eliminated between these two equations to give v2i = �vAi=L, or in dimen-sionless form Mi = 1R1=2m (3.46)in terms of the Alfven Mah number M = vvA (3.47)and the magneti Reynolds number Rm = LvA� (3.48)based on the Alfven speed.Now, let us onsider the energetis of this model. Beause l � L then vi � vAi. The rate ofinow of eletromagneti energy is the Pointing ux E�H per unit area, or, sine E = viBi inmagnitude, EHL = EBi� L = viB2i� L: (3.49)Therefore by Eq. 3.47 the ratio of the inow of kineti to eletromagneti energy isInflowK:E:InflowE:M: = vi1=2�v2i LviLB2i =� = 1=2�v2iB2i =� = v2i2v2Ai � 1: (3.50)



33In other words, most of the inowing energy is magneti.Next onsider the energy outow. By onservation of uxv0B0 = viBi; (3.51)(whih is onsistent with Eq. 3.42 and 3.45) and so B0 � Bi. Outow of eletromagneti energyis EB0l=�, whih is muh less than the inow of eletromagneti energy sine both B0 � Biand l � L. So what has happened to the inowing magneti energy? The ratio of outowingkineti to inowing magneti energy isoutflowK:E:inflowE:M: = 1=2�v20(v0l)viB2i L=� = 1=2v20v2Ai = 12 : (3.52)Thus half of the inowing magneti energy is onverted to kineti energy, while the remaininghalf is onverted to thermal energy. In other words, the e�et of the reonnetion is to reatehot fast streams of plasma. In this onnetion it is useful to remember, that by substituting forr�H from Ampere law and for r�E from Faraday law, we an write�r � (E�H) = E � r �H�H � r �E (3.53)�r � (E�H) = E � j+ ��t  B22�! ; (3.54)whih implies that an inow of eletromagneti energy an produe eletrial energy (E � j) forthe plasma and a rise in the magneti energy. Furthermore, by taking the salar produt of jwith Ohm law E = j=� � v�B, we obtainE � j = j2� + v � j�B; (3.55)so that the eletrial energy appears partly as ohmi heat and partly as the work done by theLorentz fore (aelerating plasma). In our ase the inow of eletromagneti energy goes intoeletrial energy, half of whih appears as heat and half as kineti energy.There is also fast regime of the Sweet-Parker reonnetion (see Fig. 3.11). The ow speed andmagneti �eld at large distanes Le from X-point are denoted by ve and Be. The propertiesof reonnetion models depend on two dimensionless parameters: the reonnetion rate (Me =ve=vAe) and global magneti Reynolds number (Rme = LevAe=�).Reonnetion is "fast" when the reonnetion rate (Me) is muh greater than the rate expressedin Eq. (3.46). Properties at the inow to the di�usion to the di�usion region (denoted by "i")may be related to the external values at large distanes (denoted by "e"). Thus ux onservation(viBi = veBe, through the same length, a part of ux is going out of di�usion region) may bewritten as MiMe = B2eB2i : (3.56)Then the relations (3.44) and (3.45) may by rewritten intoLLe = 1Rme 1M3=2i 1M1=2e ; (3.57)lLe = 1Rme 1M1=2e 1M1=2i : (3.58)
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Fig. 3.11: The notation for fast regimes.Thus, one Bi=Be is determined from a model of the external region outside the di�usion regionlast tree equations determine Mi=Me and the dimensions of the di�usion region in terms of Meand Rme.) Petshek modelIn this model, most of the energy onversion takes plae at standing slow-mode shoks (Fig. 3.12).These shoks aelerate and heat the plasma, with 2=5 of the inowing magneti energy beinghanged to heat and 3=5 to kineti energy.The inow region onsists of slightly urved �eld lines and the magneti �eld is a uniformhorizontal �eld (Bex), plus a solution of Laplae equation whih vanishes at large distanes andwhih has a normal omponent BN at the shok waves and zero at the di�usion region. Tolowest order, the inlination of the shoks may be negleted, and so the problem is to �nd asolution in the upper half-plane whih vanishes at in�nity and whih equals 2BN between Land Le on the x-axis and, by symmetry �2BN between �Le and �L. Now, we may regard thenormal omponent on the x-axis as being produed by a ontinuous series of poles. If eah poleprodues a �eld m=r at distane r, then the ux produed in the upper half plane by that polewill be �m: if the pole oupies a distane dx of the x-axis, the ux is also 2BNdx, so thatm = 2BN=� and integrating along the x-axis gives the �eld at the origin produed by the poles
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Fig. 3.12: (a) Petshek model, (b) notation for the inow region.as 1� Z �L�Le 2BNx dx� 1� Z LeL 2BNx dx: (3.59)Adding this to the uniform �eld (Be) at in�nity givesBi = Be � 4BN� log LeL : (3.60)But at the shok waves (slow shoks travel at the Alfven speed based on the normal �eld,BN=p��, so that (3.60) beomesBi = Be �1� 4Me� log LeL � ; (3.61)whih is the expression for Bi that we have been seeking.Sine Me � 1 and Bi � Be, the salings (3.57) and (3.58) beomeLLe � 1RmeM2e ; lLe � 1RmeMe ; (3.62)whih show that the dimensions of the entral region derease as the magneti Reynolds number(Rme) or reonnetion rate (Me) inrease. Petshek suggests that the mehanism hokes itselfo� when Bi beomes too small, and so he estimates a maximum reonnetion rate (M�e ) byputting Bi = 1=2Be in (3.61) to give12 = 4Me� log LeL ; LeL � Rme; (3.63)M�e � �8 logRme : (3.64)
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Fig. 3.13: Coordinate system used in the derivation of the tearing-mode instability ondition for a sheeturrent.Unsteady reonnetion: tearing modeLet us onsider instability in the suÆiently long urrent sheet (Fig. 3.13); J1 and B1 areperturbations. This type of instability is that with �nite resistivity, so Ohm law may be writtenas E1 + v1 �B0 � �eJ1 = 0: (3.65)We an see that the e�et of �nite resistivity beomes important at the neutral layers at x � 0,where the z-direted magneti �eld B0 � 0. On the other hand, at distanes suÆiently far fromthe neutral layer, the v � B term an dominate, and the plasma an be regarded as lossless.Thus, the urrent sheet an be divided into two regions:a) In the �rst region j x j< � the di�usion equation is valid�B1�t = �e� r2B1: (3.66)If the solution in the form B1x � exp(ikz + t) is assumed then the equation may be rewritteninto d2B1xdx2 � �k2 + ��e �B1x = 0; (3.67)where B1x � A osh�k2 + ��e �1=2 x: (3.68)is the solution of this equation.b) Similarly in the lossless region a >j x j> � this equation has a formd2B1xdx2 + � 1�2 � k2�B1x = 0; (3.69)



37whih solution an be expressed asB1x = C sin� 1�2 � k2�1=2 x: (3.70)If we now onnet the solutions from both these regions at x = �, then we an derive the growthrate as  = �e��2 : (3.71)Namely, for small x osh x � 1 + x; sinx � x; (3.72)1 + �k2 + ��e �1=2 � = ( 1�2 � k2)1=2� � 0; k ! 0: (3.73)Referene:Hasegawa, A.: 1975, Plasma instabilities and non-linear e�ets, Springer-Verlag, Berlin.Reonnetion in three dimensions

Fig. 3.14: Linear three-dimensional nulls. Potential nulls: (a) radial and (b) improper. Non-potential nulls:() improper and (d) spiral, both with only parallel urrent; (e) radial and (f) spiral, both with perpendiularurrent.Reonnetion in three dimension di�ers essentially from that of in two dimensions. For a 3-Dneutral point, the struture onsists of two main features (Fig. 3.14a): a spine and fan surfae.



38 Chapter 3: MAGNETIC FIELD RECONNECTIONThe spine is made up of two �eld lines that are direted into (or out of) the null. The fanonsists of a surfae of �eld lines that are pointing away from (or into) the null. Other uxsurfaes in the viinity of the null onsist of �eld lines that run almost parallel to the spinebefore spreading out below the fan plane. In a positive null the �eld along the spine is diretedinto the null and the fan �eld lines spread out from the null; similarly, a negative null has �eldlines pointing towards the null in the fan and direted out along the spine.The struture of any null is de�ned by four parameters (p; q; jk; j?); the urrent is equal toj = (j?; 0; jk); (3.74)so the parameters jk and j? represent omponents of urrent parallel and perpendiular to thespine, respetively, while p and q are assoiated with the potential part of the �eld. We de�nejthresh, alled the threshold urrent, to be equal tojthresh = q(p� 1)2 + q2: (3.75)To investigate the di�erent types of 3-D null points we �rst onsider potential null points, whihhave a general form B = (x; py;�(p+ 1)z): (3.76)They an either be radial (p = 1) or improper nulls (p > 0 and p 6= 0) (see Fig. 3.14a andFig. 3.14b).Non-potential nulls, however, have the formB = (x+ (q � jk)y=2; (q + jk)x=2 + py; j?y � (p+ 1)z): (3.77)These nulls may be divided into two ategories: those that only have urrent parallel to the spineand those that have a omponent of urrent perpendiular to the spine. For example, two typesof null with only parallel urrent are illustrated in (Fig. 3.14 and Fig. 3.14d); an improper nullwhere jk < jthresh and a spiral null where jk > jthresh, respetively. Two examples of nulls withthe perpendiular urrent are radial null (jk = 0) and a spiral null (jk > jthresh) (Fig. 3.14e andFig. 3.14f).Referene:Parnell, C.E.: 1996, Proeedings of YOHKOH Conferene, Bath, England, p. 19.
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Fig. 3.15: Struture of the x-line: (a) in-plane magneti �eld, (b) in-plane veloity, () out-of-plane ion urrent,(d) out-of-plane eletron urrent, out-of-plane magneti �eld.There are attempts to simulate the magneti reonnetion not only in the MHD approximation,but in a more general kineti approah. In Fig. 3.15 the results of the hybrid modelling with2048� 512 grid points and 20 million partiles are shown. Here, di�erenes between eletronand ion urrents an be seen, whih it is not possible to simulate in the MHD models.Referene:Shay, M.A., Drake, J.F, Rogers, B.N., Denton, R.E.: 1999, Geophys. Researh Letters, Vol. 26(14), 2163.Connetivity and quasi-separatrix layersAs seen in Fig. 3.16 magneti �eld lines form domains in whih they onnet the photosphere.
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Fig. 3.16: The model of the magneti �eld of four sunspots of pairwise opposite polarity. The boundarysurfaes D1 and D2 ross in the orona at a topologially singular magneti �eld line, the separator, whihonnets the points X1 and X2 in the photosphere. The ontour f is an example of a �eld line onneting thedistant sunspots N and S.

Fig. 3.17: Flaring AR 2779 on November 12, 1980: example of quadrupolar region formed by two extendedbipoles. (a) Observational data: hathed regions - H� are kernels and longitudinal magneti �eld. (b) Intersetionof the QSLs with the photosphere for a linear fore-free extrapolation (�= -0.019 Mm�1) with �eld lines andurrent-density regions. (,d) Perspetive views of (b), with �eld lines drawn as surfaes.These domains are separated by separatries, whih an ross in the separators. The separatoran be formed by null magneti �eld line. If there is non-zero omponent of the magneti �eldalong these separatries then it is useful to de�ne so alled quasi-separatrix layers (QSL). These



41QSL are regions where a drasti hange in �eld-line onnetivity ours, i.e. where �eld linesinitially lose separate widely over a short distane. Let us integrate over a distane s in bothdiretions the �eld line passing at a point P (x; y; z) of the orona. The end points of oordinates(x0; y0; z0) and (x00; y00; z00) de�ne a vetor D(x; y; z) = X1;X2;X3 = x00 � x0; y00 � y0; z00 � z0. Adrasti hange in �eld-line onnetivity means that for a slight shift of the point P (x; y; z),D(x; y; z) varies greatly.The funtion N , de�ned byN(x; y) =vuutXi=1;2((�Xi�x )2 + (�Xi�y )2); (3.78)N(x; y) is de�ned only at the photospheri boundary and is the norm of the displaement gra-dient tensor de�ned when mapping, by �eld lines, points from one setion to another of thephotosphere. The loations where N(x; y) takes its highest values de�ne the �eld lines involvedin the QSLs. By following these lines we an loate the oronal portion of the QSLs - see Fig. 3.17.Referene:Demoulin, P., Bagala, L.G., Mandrini, C.H., Henoux, J.C., Rovira, M.G.: 1997, Astron. Astro-phys. 325, 305-317.Triggering of reonnetion by a passage of the shok wave throughthe urrent sheetSee �le trigger.pdfReferene:Odstr�il, D., Karlik�y, M.: 1997, Triggering of magneti reonnetion in the urrent sheet byshok waves, Astron. Astrophys. 326, 1252-1258.Shear magneti �eld reonnetion near the the 3-D null pointNumerial ModelComputations are performed in the 3-D numerial box with 41 � 41 � 41 grid points (800 �800 � 800 km). The numerial ode whih solves the set of MHD equations is based on theFCT algorithm.In the initial state the magneti on�guration orresponding to the 3-D null point is generated(Fig. 3.18). B(G) = �x� x0x00 ; y � y0y00 ;�2(z � z0)z00 � ; (3.79)where x0 = 4� 105 m, x00 = 4� 104 m, y0 = 4� 105 m and z00 = 4� 104 m. The layer near theplane Z = 1 is alled the fan, and the entral vertial line in the struture is alled the spine.The initial temperature of 106 K and the plasma density of 10�8 kg m�3 is put onstant throughthe system (oronal onditions). The plasma parameter � is thus everywhere � � 1.The shear plasma ow whih ontinuously deforms the initial magneti �eld lines is used in thefollowing form: v = v0 tanh�z � z0zv � ; (3.80)



42 Chapter 3: MAGNETIC FIELD RECONNECTIONwhere v0 = �105 m s�1, z0 = 4�105 and zv = 105 m. Free boundaries around the omputationalbox are onsidered.For a modelling of reonnetions the anomalous resistivity was assumed in the X � Y layerbetween 320 and 480 km, and its value was hosen to be �e = 2� 10�6 s.ResultsWe made two types of omputations: with and without the anomalous resistivity at the fan layer.Namely, at this layer where the eletri urrent density is inreasing during the shear plasmaow the anomalous resistivity an be naturally generated. The ase without this resistivity isonsidered for omparison.First, the urrent density in the entral box point for both ases are ompared (Fig. 3.19).While in the ase without the resistivity the urrent density is linearly inreasing as expetedfrom theoretial estimations, in the ase with the resistivity the urrent density inreases moreslowly up to the saturated value orresponding to the steady-state of reonnetion.The results of omputations are shown in Figs 3.20 and 3.21. Figure 3.20 shows a deformationof magneti �eld lines due to the shear plasma ow without taking into aount the resistivity;on the other hand Figure 3.21 shows this deformation simultaneously with the ipping of linesdue to the anomalous resistivity. Comparing the magneti �eld lines in these �gures we ansee that the magneti �eld lines reonnet in the fan layer. Thus, the magneti �eld lines fromone side of the fan onnet magneti lines on the opposite side and rossing the plane Z = 1.Simultaneously, their onnetions in the fan layer are hanged over a broad range of angles: themaximum is near the spine (180o); this angle is dereasing with the distane inrease from thespine.

Fig. 3.18: The initial state of the magneti �eld on�guration.Referene
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Fig. 3.19: Evolution of the normalized eletri urrent density at the entral box point for the ase without(full line) and with (dashed line) the anomalous resistivity in the fan layer.Karlik�y, M.: 1997, Shear magneti �eld reonnetion near the 3-D null point, Hvar Obs. Bull.21, 1, 91-96.Priest, E., Forbes, T.: 2000, Magneti reonnetion: MHD theory and appliations, CambridgeUniversity Press, Cambridge, UK.
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Fig. 3.20: Magneti �eld lines at 2 s for the ase without the anomalous resistivity. X,Y, and Z sale unitsare 400km.

Fig. 3.21: Magneti �eld lines at 2 s for the ase with the anomalous resistivity. X,Y, and Z sale units are400km.



Chapter 4HeliityAn evolution of some energy integrals of physial systems is ommonly used for a system de-sription. In the solar orona for a desription of e.g. ares or prominenes we an use thevolume integral of the magneti �eld energy:Emag = ZV B22�0 dV: (4.1)A disadvantage of this approah is that the oronal magneti �eld onsists of a strong omponentof the potential magneti �eld whih is produed by sub-photospheri eletri urrents. Thispart of magneti energy remains onstant during ative proesses in the solar atmosphere. Onthe other hand, only a small part of the magneti �eld energy, orresponding to eletri urrentsin the solar atmosphere, an be transformed into other energy forms and an be dissipated.For these reasons an another volume integral, alled heliity, was proposed for a physial de-sription of these phenomena H = ZV A �BdV; (4.2)where B = r�A;where A is the vetor potential.It an be shown that the heliity is diretly onneted with twists and linkings of magneti �eldlines, whih simultaneously expresses eletri urrents in the system. Thus, the heliity desribesa part of the magneti �eld energy whih an be released during solar ares, and therefore theheliity is useful tool for ative phenomena desription.Heliity onservationLet us alulate a time hange of the heliity:��t Z A �BdV = Z A � �B�t dV + Z �A�t �BdV:Now, using the indution equation �B�t = r� (v �B);45



46 Chapter 4: HELICITY�r�A�t = r� (v �B);r� �A�t = r� (v �B);�A�t = (v �B) = �E;(where the last equation expresses Ohm law) we an ontinue in the heliity onservation al-ulationsZ A � ��t(r�A)dV + Z �A�t �BdV = Z A � r � �A�t dV + Z �A�t � r �AdV: (4.3)The right side of this equation an be rewritten using the vetor identityr � (A� �A�t ) = �A�t � r �A�A � r � �A�t ;as = � Z r � (A� �A�t )dV + Z 2�A�t � r �AdV:The last term is zero, beause �A=�t = v �B and r�A = B, and thus their salar produtis zero.It means that for time hange of heliity we an write��t Z A �BdV = � Z r � (A� �A�t )dV;and using Gauss theorem ��t Z A �BdV = � ZSA� �A�t dS: (4.4)Then, if �A=�t = �E = 0 at the system boundary then the heliity in the system is onserved.Now, let us show that the heliity is invariant to a gauge transformation. Performing thistransformation A0 = A+r� (namelyr�r� = 0) we an writeH 0 �H = Z r� �BdV;and using r � (�B) = r� �B+ �r �B; r �B = 0;the heliity di�erene is H 0 �H = Z r(�B)dV = ZS �BdS; (4.5)whih vanishes only if Bn = 0 at the system boundary, sine � is arbitrary. Thus, in in�nite orlosed system the heliity is onserved and it is gauge-invariant. But this general statement is



47not very useful for pratial purposes. Therefore other forms of the heliity integrals need to beonstruted.Let us de�ne the so alled relative heliity in a �nite system asH = ZV (A+A0) � (B�B0)dV; (4.6)where A0 and B0 orrespond to the potential magneti �eld with the same boundary onditionsas A and B.Now, let us alulate the time derivative of this heliity: (The auxiliary relations are E0 =0;r�0 = 0; �A0=�t = 0; �B0=�t = 0; �A=�t = �E�r�; �B=�t = �r�E.)�H�t = Z (�(A+A0)�t � (B�B0) + (A+A0) � �(B�B0)�t )dV;�H�t = Z (�A�t � (B�B0) + (A+A0) � �B�t )dV;�H�t = Z ((�E�r�) � (B�B0)� (A+A0) � (r�E))dV;�H�t = Z (�E �B+E �B0 �r� � (B�B0)� (A+A0) � (r�E))dV:In the following the vetor identity r � (�(B�B0) +E� (A+A0)) = (4.7)�r � (B�B0) +r� � (B�B0) + (A+A0) � r �E�E �B�E �B0;where E �r�A = E �B; E �r�A0 = E �B0; r� (B�B0) = 0, is used. After a manipulationand using Gauss theorem we an write�H�t = �2 ZV E �BdV � ZS(�(B�B0) +E� (A+A0))dS: (4.8)The �rst term on the right side of this relation expresses the Ohm dissipation as an be seenreplaing the eletri �eld as E = B� v + �ej, where j is the eletri urrent density. Thus therelative heliity is onserved in the spatially limited system when the Ohm dissipation is low (inoronal onditions it is usually ful�lled) and Bn = B0n;E = 0.If the Ohm dissipation is negleted and A = A0 then the hange of the relative heliity in thesystem is given by two term:�H�t = �2 ZSA0 �EdS = �2 ZSA0(B� v)dS = (4.9)= �2 ZS(A0 � v)BdS + 2 Zs(A0 �B)vdS;the �rst term expresses a hange of the relative heliity due to shearing motions at the systemboundary and the seond one represents a diret 'inow' of the heliity.



48 Chapter 4: HELICITYIn the solar physis studies there are attempts to evaluate the heliity hange aused by photo-spheri shearing motions. For simpliity, let us assume that the photosphere is loally planar atthe sale size of the ative region. Then a hange of the heliity an be written as�H�t = 2 ZS(A0 � v)BndS = 1� ZS ZS0 R� v(r)R2 jn Bn(r)Bn(r0)dSdS0; (4.10)where R = r� r0 is the di�erene between two spatial positions on the photospheri plane, andBn is the magneti �eld omponent perpendiular to the photosphere. This equation involvesa double integration on the boundary. Sine the integrations are done on the same surfaes,S = S0, we an exhange r and r0. This yields a new equation that summed up with previousequation gives: 2�H�t = 1� ZS ZS0 R� [v(r) � v(r0)℄R2 jn Bn(r)Bn(r0)dSdS0: (4.11)Let us de�ne � as the angle between R and a �xed diretion (e.g. the east-west diretion) withtrigonometri onvetion (ounterlokwise), then:d�dt = R� dR=dtR2 jn (4.12)(with dR=dt = v(r)� v(r0)) the equation (1.11) is transformed to:�H�t = 12� ZS ZS0 d�dtBn(r)Bn(r0)dSdS0: (4.13)This equation shows that the heliity injetion rate an be understood as the summation of therotation rate of all the pairs of elementary uxes weighted with their magneti ux.



Chapter 5Simple numerial shemes for asolution of MHD equationsUsing a simple equation �u�t = �v�u�x (5.1)as an example, let us show some numerial methods whih may be used for a solution of gen-eral MHD equations. Namely, �u=�t + v�u=�x:::: is a part of these equations. A numerialapproximation of Eq. 5.1 may beun+1j � unj�t = �vunj+1 � unj�12�x ; (5.2)where �t and �x are the time step and grid step, respetively. Rearranging this equation wehave un+1j = unj � v�t2�x(unj+1 � unj�1): (5.3)Let u vary like unj � ei(kxj�!n�t), where xj is the j-th grid point oordinate j�x. From Eq.5.3we obtainei(kj�x�!(n+1)�t) = ei(kj�x�!n�t) � v�t2�x �ei(k(j+1)�x�!n�t) � ei(k(j�1)�x�!n�t)� ; (5.4)and after dividing by ei(kj�x�!n�t)e�i!�t = 1� v�t2�x(eik�x � e�ik�x): (5.5)The ampli�ation fator g � un+1j =unj = e�i!�t is then aording to the previous equationg = 1� iv�t�x sin(k�x); (5.6)and its modulus j g j2= 1 + �v�t�x �2 sin2(k�x) > 1; (5.7)whih shows that this sheme is always numerially unstable.
49



50 Chapter 5: SIMPLE MHD NUMERICAL SCHEMESLax shemeIn this approah we write Eq. 5.1 asun+1j = 12(unj+1 + unj�1)� v�t2�x(unj+1 � unj�1): (5.8)Then it an be rewritten intoei(kj�x�!(n+1)�t) = 12 �ei(k(j+1)�x�!n�t) + ei(k(j�1)�x�!n�t)� (5.9)� v�t2�x �ei(k(j+1)�x�!n�t) � ei(k(j�1)�x�!n�t)� ;and after dividing by ei(kj�x�!n�t) the ampli�ation fator isg = os(k�)� iv�t�x sin(k�x); (5.10)and its modulus is j g j2= 1� sin2(k�x)�1� (v�t�x )2� : (5.11)The sheme is stable when j g j2� 1. This ondition is ful�lled if�t � �x=v: (5.12)Lax-Wendro� shemeLet us onsider a simple equation �u�t + �F�x = 0; (5.13)where F = uv (v is onstant), as an example. The Lax-Wendro� sheme onsists of two steps:The �rst one is aording to Lax sheme over a half time stepun+1=2j = 1=2(unj�1 + unj+1)� �t=22�x (F nj+1 � F nj�1); (5.14)and the seond one over a full time step follows asun+1j = unj � �t2�x(F n+1=2j+1 � F n+1=2j�1 ): (5.15)There are many further expliit as well as impliit shemes. The leap-frog sheme was desribedin details in the above mentioned partile ode. Further important approah is so alled "uxorreted transport method", whih is suessfully used in MHD tasks with shok waves.



Chapter 6Plasma emission proessesIn this hapter, only a general approah is presented. For more details and appliations see:Melrose, D.B.: 1980, Plasma Astrophysis, Gordon and Breah, New York.6.1 Waves in plasmas6.1.1 Wave equationDue to many types of partile motions, in plasmas (espeially in plasmas with the magneti�eld) many types of waves an exist. This broad variety follows from a high omplexity of theplasma response to eletri or magneti �eld perturbations. The eletri (E) and magneti (B)�elds in plasmas are desribed by the system of Maxwell equations:r�E = ��B�t r � E = 1"0 � (6.1)r�B = �0j+ 12 �E�t r �B = 0where j is the eletri urrent density and � the harge density. These two quantities satisfy theharge ontinuity equation ���t +r � j = 0; (6.2)what implies from the set (6.1) as followsr � �E�t = 1"0 ���t ;r � (2r�B� �02j) = 1"0 ���t :Another useful equation is that for energy onservation, whih an be derived asB � r �E+B�B�t = 0;E � r �B� �0E � j� 12E � �E�t = 0:51



52 Chapter 6: PLASMA EMISSION PROCESSESUsing now the vetor identityr � (E�B) = B � r �E�E � r �B;we an write ��t  j B j22�0 + "0 j E j22 !+r � (E�H) = �E � j: (6.3)This equation expresses the onservation of eletromagneti energy; its hange is due to Poyntingvetor ux E�B=�0 and Ohm dissipation E � j.For the purpose of formal theory of waves it is onvenient to express Maxwell equations innatural basis of harmoni funtions. Thus Fourier transforming the set (6.1) one obtains:k�E = !B (6.4)k�B = �i�0j� !2 � E (6.5)k �E = � i"0� (6.6)k �B = 0: (6.7)It is lear that the equation (6.7) is redundant sine it follows diretly from eq. (6.4), butwith one exeption { in the ase of ! = 0, i.e. in the ase of stati �elds, the redution of thesystem of equations does not apply. Thus, stati �elds have to be treated expliitly in furtheronsiderations. This is losely related to the well known problem of the fourth Maxwell equation(r�B = 0), whih should be onsidered as the initial ondition rather than independent relation.From the set of three remaining equations the general wave equation in the formk� (k�E(k; !)) + !22 E(k; !) = �i!�0j(k; !) (6.8)an be derived, where equations (6.4) and!�(k; !) = k � j(k; !);whih is just the Fourier transform of ontinuity equation (6.2), should be onsidered as de�ni-tions of auxiliary quantities B and � in terms of basi quantities E and j, respetively.The urrent density j at the right-hand side of the general wave equation an onsist of twoparts:1. The urrent aused by indued motion of partiles in plasmas under inuene of eletro-magneti �eld jind.2. The extraneous urrent jext.In the �rst approximation the indued part of the urrent is linearly related to eletri �eldaording to generalized Ohms law (in usual tensor notation):jindi (k; !) = �ij(k; !) �Ej(k; !) (6.9)where �ij(k; !) is the generalized ondutivity tensor and usual Einstein's summation law wasapplied. For the formal purposes it is muh more onvenient to use another tensor desribing



6.1. Waves in plasmas 53the linear plasma response to eletri �eld perturbation. The dieletri tensor "ij(k; !) is de�nedas: "ij(k; !) � Æij + i!"0 � �ij(k; !) (6.10)with Æij being the Kroneker delta (the unit tensor). Separating the urrent density into induedand extraneous parts and using Ohms law (6.9) and dieletri tensor de�nition (6.10) the waveequation (6.8) may be re-written into the form: 2k� (k�E)!2 !i +Ei + i!"0 jindi = � i!"0 jexti ; 2k� (k�E)!2 !i + (Æij + i!"0�ij)Ej = � i!"0 jexti ;�ij(k; !) �Ej(k; !) = � i!"0 jexti (k; !) (6.11)where the dispersion tensor �ij(k; !) is de�ned as�ij(k; !) � k22!2 �kikjk2 � Æij�+ "ij(k; !): (6.12)The equation (6.11) represents a set of three linear equations with omponents of the extraneousurrent density jext(k; !) as expliit soure terms.Exept of this expliit soure term there is also an impliit one hidden in the dieletri tensor.The dieletri tensor an be separated into two parts { hermitian and anti-hermitian"ij = "hij + "aij ;"hij = 1=2("ij + "�ji);"aij = 1=2("ij � "�ji);whose desribe di�erent kinds of plasma response to an eletri �eld perturbation. While the her-mitian part of "ij(k; !) desribes time-reversible omponent of the response, the anti-hermitianpart auses wave energy hanges, either negative (damping of waves) or positive (ampli�ationor by other words negative damping/negative absorption of waves).6.1.2 The dispersion equation of linear wavesThe question arises what is behaviour of the eletri �eld perturbation in the ase withoutdissipation and extraneous soures. One has to solve homogeneous form of the equation (6.11)in whih also the impliit soure term in the dieletri tensor (the anti-hermitian part) is omitted,i.e. �hij(k; !) �Ej(k; !) = 0; (6.13)where �hij(k; !) is the hermitian part of the dispersion tensor. Solution of suh a system ofequations exist only if the relation�(k; !) � det�hij(k; !) = 0 (6.14)



54 Chapter 6: PLASMA EMISSION PROCESSESis ful�lled. The ondition (6.14) represents the general dispersion equation for linear non-dampedwaves in plasmas. To rewrite it to the usual form of the dispersion relation for a spei� wavemode one has to express the frequeny ! as a funtion of the wave vetor k. This is not uniqueoperation in general, however, many branhes of waves with di�erent dispersion relations!m = !m(k) (6.15)an be obtained. Eah branh !m(k) represents one wave mode m.6.1.3 Polarisation vetorsInserting relation (6.15) into the homogeneous equation (6.13) a solution for spei� wave modean be found. Aording to known rules of linear algebra the vetor that solves (6.13) has to bethe eigen-vetor orresponding to the zero eigen-value of the tensor�hij(k) = �hij (k; !m(k)) :Namely, one eigen-value of the matrix representing a homogenous set of equations is zero. Theorresponding eigen-vetor is not determined uniquely sine in the homogenous set of equations,with its determinant equals to zero, the number of linearly independent equations is less thanthe number of vetor omponents. Therefore it is onvenient to hoose an unimodular omplexvetor em(k) as a representative of all solutions of the equation (6.13) for given wave mode.Suh vetor is alled the polarisation vetor and besides the dispersion relation (6.15) it is oneof the basi harateristis of the spei� wave mode. For example, from the polarization vetorthe magneti and indued urrent vetors an be derived; using Eq. (6.4) and (6.9).6.1.4 Energetis in the wavesThe eletri perturbation in plasma waves indues also the perturbation of magneti �eld and,due to medium response, also variations of plasma veloity, stresses and pressure. All theseperturbations raise the total amount of energy ontained in plasmas and the di�erene over theequilibrium state an be asribed to the waves. Thus, for the total wave energy of the mode mwe an write wmT (k) = wmE (k) + wmM (k) + wmp (k):It is straightforward to ompute the eletri or magneti �eld energy in waves knowing theeletri �eld amplitude: wmE (k) = "0jEm(k)j2V : (6.16)and using Eq. (6.4) wmM (k) = �k! �2 (1� j kk � em j2)wmE :On the other hand, mehanial energy onneted with plasma motions and stresses is hard tobe identi�ed in general. Nevertheless, the total amount of energy ontained in partiular wavemode an be, fortunately, related to the eletri �eld energy in this mode independently. The�rst is to inlude the anti-hermitian part of the dieletri tensor "aij as a small orretion in thedispersion equation. To �rst order one an writedet(�hij + "aij) = � + �ij"aji: (6.17)



6.1. Waves in plasmas 55Now damping of the waves is taken into aount by allowing ! to have a small imaginary part�i=2, suh that the wave energy damps as e�t. Then, to lowest order in the terms assoiatedwith wave damping, Eq. (6.17) gives� i2 ���! + �ij"aji = 0; (6.18)whih is evaluated at � = 0. Similarly we an allow k to have a small imaginary part �i�=2Then Eq. (6.18) has a form: � i2 ���! � i�2 ���k = ��ij"aji: (6.19)On the other hand, for the energy wm damped as e�t and the energy ux Fm damped as e��rwe an write �wm�t +r � Fm = Qm;wm + �Fm = �Qm; (6.20)where Qm is the soure or damping wave term.Now, omparing Eqs. (6.19) and (6.20) one hasFmwm = ����k =���!�!=!m = �!m�k = vmg :The result implies that the veloity of energy propagation is the group veloity.Moreover, the term  = �Qmwm = � 2i�ij"aji����!�!=!m (6.21)is the absorption oeÆient. Besides this relation there is a theoretial proedure in whihthe ratio between Qm and wmE an be derived. Then by a omparison of these ratios thequantity RmE = wmE =wm, expressing the ratio between the eletri and total wave energies, anbe determined.6.1.5 Spei� wave modesAs an illustration of determination of partiular wave mode and its harateristis from the gen-eral dispersion equation (6.14) one may hoose well known Langmuir, transverse and ion-soundwaves in plasmas without ambient magneti �eld. The �rst thing has to be done is alulationof the dieletri tensor. The kineti approah gives for unmagnetized plasmas following result(Melrose, 1980, p. 40):"ij(k; !) = Æij +X� q2�"0!2 Z (! � k � v)Æsj + ksvj! � k � v + iO � vi � �f�(p)�ps d3p; (6.22)the sum is performed over eah partile speies � and small imaginary part in the denominatorindiates that orret integration path aording to Landau presription has to be used. Forisotropi medium the dieletri tensor an be separated into longitudinal("l) and transversal ("t)parts as: "ij(k; !) = "l(k; !) � kikjk2 + "t(k; !)�Æij � kikjk2 � (6.23)



56 Chapter 6: PLASMA EMISSION PROCESSESand expliit alulation for Maxwellian distribution funtion gives (Melrose, 1980, p. 50):"l(k; !) = 1 +X� 1k2�2D� h1� �(y�) + ip�y� exp(�y2�)i (6.24)"t(k; !) = 1 +X� !2p�!2 h��(y�) + ip�y� exp(�y2�)i :Here, !p� and �D� are appropriate plasma frequenies and Debye lengths, respetively:!2p� � n�q2�m�"0 ; �D� � V�!p� ; (6.25)and the following dispersion funtion (V� � kBT=m� designates thermal veloity of partiles ofspeies �) was used: �(y) � 2y exp(�y2) Z y0 exp(t2)dt; y� � !p2kV� ;�(y) = 2y2 � 4=3y4 + :::: for j y2 j� 1; (6.26)�(y) = 1 + 1=(2y2) + 3=(4y4) + :::: for j y2 j� 1:Inserting the hermitian part of the dieletri tensor (i.e. retaining real parts of longitudinaland transversal omponents only) in the form of (6.23) into the equation (6.14) the dispersionequation �Ren"l(k; !)o� � �n2 �Ren"t(k; !)o�2 = 0 (6.27)is obtained with the refrative index n de�ned asn � k! :Now, expanding the funtion �(y) into series for the high-frequeny limit (y � 1) and retainingonly �rst few terms of eletroni ontribution to this funtion (the ontribution of ions is reduedby fator of me=mi relatively to that of eletrons) the transversal part of the equation (6.27)beomes n2 = 1� !2pe!2or using the refrative index de�nition, it an be written in more familiar form!2(k) = !2pe + 2k2: (6.28)The just derived equation (6.28) represents the dispersion equation for transversal (eletromag-neti) mode. Additional relations for this mode are:e � kk = 0; RtE = 12 ;expressing transverse harater of this mode and the ratio between eletri and total wave energy.The longitudinal part of Eq. (6.27) gives two wave modes depending on the frequeny limitused. For ! � kVe, i.e. ye � 1 the expansion of the funtion � yields dispersion equation1 + 1k2�2De  1� 1� 12 2k2V 2e!2 � 34 4k4V 4e!4 ! = 0; !2pe = V 2e�2De



6.2. Spontaneous emission 57!2(k) = !2pe + 3k2V 2e ; e = kk ; RlE = !22!2pe ; (6.29)whih desribes well known Langmuir waves.On the other hand, expanding formulae for longitudinal part of the dieletri tensor in the limitkVi � ! � kVethe ion-sound mode with the dispersion equation isRe "l � 1� !2pi!2 + 1k2�2De ;!2(k) � k22s1 + k2�2De ; e = kk ; RsE = !22!2pi ; (6.30)is found. Here, the ion-sound wave speed s is de�ned bys � !pi � �De:6.2 Spontaneous emissionIf wave emission proesses are taken into aount then, in general ase, the inhomogeneous waveequation �hij(k; !) �Ej(k; !) = � i!"0 jexti (k; !) (6.31)with the soure term, needs to be solved. Spei�ally, jext is assumed to inlude the the termwith the anti-hermitian part of the dieletri tensorjexti (k; !) = �i!"0"aij(k; !)Ej(k; !) + :::; (6.32)whih inludes not only the normal absorption of waves, but in spei� situations also negativeabsorption (ampli�ation) of waves. But in the soure term an be also further ontributions.Remark: Analyzing the equation of ontinuity for eletromagneti waves��t  j B j22�0 + j E j22"0 !+r � (E�H) = �E � j; (6.33)it is important to see a di�erene in methods used in alulation of power radiated in plasma andin vauo. In the plasma this power is alulated as a volume integral of the work done by theextraneous urrent against the eletri �eld whih it generates (the right-hand side of Eq. (6.33).In vauo the power esaping is found by integrating the radial omponent of the Poynting vetorE � H over the surfae of an in�nite sphere. In the plasma this method makes problem be-ause in this ase the Poynting vetor does not give the total energy ux in the waves, in general.



58 Chapter 6: PLASMA EMISSION PROCESSES6.2.1 Energy radiated by extraneous urrentThe extraneous urrent on the R.H. side of the expression (6.11) represents a soure term in thewave equation. The wave energy U radiated (or absorbed) by this soure is given by the workof the extraneous urrent against the onsistent eletri �eld of the wave, i.e.:U = � Z +1�1 ZV jext(r; t) �E(r; t) d3r dt = (6.34)= � Z +1�1 Z Renjext(k; !) �E(k; !)o d3k(2�)3 d!2� ;where the Parevals power theorem was used. Solution of the wave equation (6.31) an beexpressed as Ei(k; !) = � i!"0��1ik (k; !) � jextk (k; !); (6.35)where the matrix ��1ik (k; !) is the inversion operator to the dispersion tensor (6.12) and aordingto the tensor algebra rules it is written down using its o-fators (sub-determinants of transposedmatrix) �ik as: ��1ik (k; !) = �ik(k; !)�(k; !) :Now, inserting the partiular solution (6.35) into the formula (6.34), the wave energy generatedby the extraneous urrent density jext an be omputed. Contributions to integral over ! are zero(beause the integral is from the real part of apparently imaginary quantity) with exeptions ofthe poles of funtion in integrand. Suh residues have to be treated arefully, and the integrationhas to be performed over the path in the omplex plane aording to Landau presription, i.e.near the zeros we approximate � as�(k; !) � (! � !m(k) + i0)����!�!=!m(k) :Eah residue is onneted with one zero of �(k; !), and thus eah pole represents the energyradiated in one spei� wave mode. Expliit alulation gives for energy radiated by extraneousurrent in wave mode m the expressions:U = �2 Z +10 Z Re�jexti (� i!"0 )jextk �ik� � d3k(2�)3 d!2� ;U = �2 Z 10 Z Re8><>:jexti (� i!"0 )jextk �ik(! � !m(k) + i0)����!�!=!m(k)9>=>; d3k(2�)3 d!2� :Now using the Plemelj formula,1! � !0 � i0 = P 1! � !0 � i�Æ(! � !0);where P denotes the Cauhy prinipal value:P 1! = lim�!0 1! for j ! j>j � j;P 1! = lim�!0 0 for j ! j<j � j;



6.3. Plasma emission mehanism 59we an writeU = �2 Z 10 Z Re(jexti (� i!"0 )jextk �ik���! (�i�Æ(! � !m))) d3k(2�)3 d!2� ;U = �2 Z 10 Z Re(jexti (� i!"0 )jextk �ssemi emk���! (�i�Æ(! � !m))) d3k(2�)3 d!2� ;Um = Z RmE (k)"0 ���em(k) � jext (k; !m(k))���2 d3k(2�)3 ;where the bar over the polarisation vetor em(k) means omplex onjugation as usual. Appar-ently, the quantity um(k) = RmE (k)"0 ���em(k) � jext (k; !m(k))���2 (6.36)that represents the wave energy generated by urrent density jext (k; !m(k)) in the mode m perunit ube of k-spae, or its time derivative { the radiated powerpm(k) = lim�!1 um(k)� (6.37)will be more relevant ones for omputation of radiation in partiular emission proesses.6.3 Plasma emission mehanismStandard radiative mehanisms { the bremsstrahlung and gyrosynhrotron radiation are onsid-ered also for solar orona radio emission, partiularly for quiet sun radiation and slowly-varyingsolar radio omponent. Nevertheless, solar radio bursts that often onsist of intense narrow-band�ne strutures hardly ould be explained in terms of these proesses sine they have by theirnature broad-band emission spetrum. Moreover, there is quantitative disagreement in valuesof radio ux predited onsidering these mehanisms.On the other hand, very hot and sparse oronal plasmas may, due to lak of ollisions, easilybe in the state of thermodynami non-equilibrium with non-Maxwellian distribution funtion,partiularly during solar transient events (e.g. ares or CMEs). Under suh irumstanes theanti-hermitian part "aij(k; !) of the dieletri tensor (6.22) an result in negative values of theabsorption oeÆient (6.21) in some range of wave-vetors for the spei� wave mode m. Onethen says, that distribution funtion is unstable with respet to generation of wave mode mwithin some range of k-spae. The negative absorption is also often alled stimulated or induedemission.Suh self-generation of waves in unstable plasmas, similar to light ampli�ation in lasers as willbe seen further, represents the basis of so alled plasma emission mehanism. Sine there aremany types of distribution funtions unstable to large amount of wave modes the term \plasmaemission" should be regarded as generi name for all radiative proesses based primarily on thenegative absorption of partiular wave modes.For the eletromagneti mode whih only an esape from the oronal plasmas and reah Earthradiotelesopes the absorption oeÆient (6.21) is always positive with one exeption of soalled eletron-ylotron maser radiation. Thus, some mehanism of onversion between unsta-ble plasma modes and the eletromagneti one is required. Suh mehanism is possible due to



60 Chapter 6: PLASMA EMISSION PROCESSESnon-linear oupling among variations of plasma parameters (e.g. eletri and magneti �eld,eletron density et.) in di�erent wave modes.To sum up, plasma emission mehanism is generi name for lass of radiative proesses workingusually in the following two stages:1. the wave mode m unstable in some range of k-spae is generated due to deviation ofdistribution funtion from equilibrium Maxwellian distribution.2. this mode m is onverted via non-linear oupling into the eletromagneti one that esapessolar orona and an be deteted on Earth.Sine the region of unstable waves in k-spae is usually limited to small extent and also thewave mode onversion is strongly resonant proess as will be seen later, resulting radio emissionis narrowband and possibly with �ne strutures as usually observed during solar radio bursts.Due to mentioned similarity with radiation ampli�ation in lasers it is onvenient to adoptpriniple of detailed balane between emission and absorption proesses used in radiative transferelementary physis and quantitatively expressed using the Einstein oeÆients. The theory builton these axioms will be in usual quantum notation briey reviewed in the following.6.4 Weak turbulene theoryStimulated emission and other indued proesses suh as wave-partile or wave-wave satteringan be under some assumptions desribed onsistently within the weak turbulene theory. It isbased on semi-lassial formalism { the partiles in states with momentum p are desribed bydistribution funtion f(p) while the waves in mode m with wave-vetor k is desribed by theoupation number Nm(k) (number of quanta of wave mode m in state with momentum �hk)de�ned as: Nm(k) = wm(k)�h!m(k) (6.38)Suh desription brings not only the advantage of uniform treatment of various indued proessesfrom the wave generation point of view, but also it enables onsistent estimation of bak-reationof partiles to wave radiation or absorption sine the priniple of energeti balane is imposedon mirosopi level here. On the other hand, approah (6.38) to wave distribution disablesorret desription of oherent proesses sine the phase information about mode depited byoupation number is lost. Thus, the assumption that phases of waves are unimportant { soalled random phase approximation { plays key role in the weak turbulene theory. Coherentproesses will be disussed in the next setion 6.5, however suh general theory as in ase ofinoherent emission has not been available yet.One may start with subset of this general desription applied to stimulated emission of wavesdue to unstable partile distribution funtion and its bak-reation to wave generation { so alledquasi-linear theory.6.4.1 Quasi-linear theoryTransferring wave generation and/or absorption proesses onto mirosopi level one has to use,aording to quantum physis, probabilisti desription of eah elementary emission/absorptionation. This is usually done introduing the Einstein oeÆients.



6.4. Weak turbulene theory 61Einstein oeÆients Consider two states desribed by partile momenta p and p�. Let thetotal number of partiles in state p is Np and Np� for the state p�, respetively. Aordingto quantum theory the transition of one partile between states p and p� is aompanied byemission or absorption of quantum of waves with frequeny given by ondition�h! = jE(p) �E(p�)j: (6.39)Here, E(p�) and E(p) are partile energies in the states p� and p, respetively. In ase of freepartiles the energy of the state p reads in non-relativisti limitE(p) = p22m (6.40)with m being the partile mass, omponents of state vetor p are simply Cartesian omponentsof partile momentum.
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Fig. 6.1: Absorption and emission proesses due to p+ $ p and p$ p� state transitions.Now suppose that E(p�) < E(p) (see Fig. 6.1) and onsider probabilities (transition rates)wm;absp�p (k), wm;sppp� (k) and wm;indpp� (k) of transitions between the states p and p� due to absorption,spontaneous and indued emission of quantum of mode m with wave-vetor k (referred as (m;k)quantum further) per unit time, respetively. The rates wm;absp�p (k), wm;sppp� (k) and wm;indpp� (k)represents Einstein oeÆients for transitions p *) p�. The total rate of transitions p� ! pdue to absorption is �dNm(k)dt = wm;absp�p (k)Np�Nm(k) (6.41)while total rate of transitions p! p� as onsequene of spontaneous or indued emission readsdNm(k)dt = wm;sppp� (k)Np +wm;indpp� (k)NpNm(k): (6.42)The relations between the Einstein oeÆients an be obtained in the state of thermodynamiequilibrium but it should be noted, that resulting relations are valid regardless of marosopistate of plasma-waves system as they are fundamental harateristis of the p*) p� transitions.In the state of thermodynami equilibrium adopted priniple of detailed balane applies implyingthat rate of hange of oupation numberNm(k) of (m;k) quanta due to absorption and emission



62 Chapter 6: PLASMA EMISSION PROCESSESproesses during p *) p� transitions together is zero. Thus ombining equations (6.41) and(6.42) one obtaindNm(k)dt = wm;sppp� (k)Np +wm;indpp� (k)NpNm(k)� wm;absp�p (k)Np�Nm(k) = 0: (6.43)In the state of thermodynami equilibrium the distribution of wave quanta is given by Planklaw Nm(k) = 1exp ��h!m(k)kBT �� 1 :Inserting the Plank law into the eq. (6.43), onsideringNpNp� = exp �E(p)�E(p�)kBT ! = exp�� �h!kBT �;and taking into aount that (6.43) has to apply for arbitrarily high temperature T the relationamong three Einsteins oeÆients is found:wm;absp�p (k) = wm;sppp� (k) = wm;indpp� (k) � wmpp�(k): (6.44)Quasi-linear equations Using the relations (6.44) the rate the (m;k) quanta are emitted atin the general (non-equilibrium) state due to all transitions that an be taken into aount is(see eq. 6.43): dNm(k)dt = Xp;p�wmpp�(k) �Np +Nm(k)(Np �Np�)� : (6.45)However, the atual number of possible transitions is muh less than it seems from eq. (6.45)sine the quantum ondition p� p� = �hkselets only allowed ones. In partiular, the transition rate wmpp�(k) an be expressed as:wmpp�(k) = wm(p;k) � Æ(p� p� � �hk): (6.46)Now, one would like to hange from disrete notation used hitherto to the ontinuous one. Thus,the number of partiles Np in the state p should be replaed by distribution funtion f(p) anddouble sum in the equation (6.45) by integration over p and p�. Using the expression (6.46) forthe transition rate w(p;p�;k) , whih is now re-interpreted as probability of quantum emissionper unit ube of k-spae, the integration over p� is performed trivially due to Æ-funtion. Theexpression f(p� �hk) appeared in the result an be for �hk� p expanded in Taylor seriesf(p� �hk) = f(p)� �hki�f(p)�pi + 12 �h2kikj �2f(p)�pi�pj + : : :When only the terms that are meaningful in lassial limit �h 7! 0 (see the paragraph Transitionrates alulation) are retained, the �rst quasi-linear equation desribing wave generation (orabsorption) in plasmas desribed by distribution funtion f(p) is �nally found:dNm(k)dt = Z wm(p;k) �f(p) +Nm(k)�hk � �f(p)�p � d3p (6.47)As was already mentioned, the advantage of this semi-lassial approah onsist besides otherin possibility of homogeneous desription of bak-reation of partile distribution to wave emis-sion/absorption proesses. On the mirosopi level, eah emission or absorption of quantum of



6.4. Weak turbulene theory 63waves is onneted with transition of partile between two states. Consequently, the time hangeof number Np of partiles in state p is given by the di�erene between net rate the quanta (m;k)are emitted at due to transition (p+ = p+�hk)! p and net rate the quanta (m;k) are emittedat due to transition p! (p� = p� �hk), i.e. (see Fig. 6.1):dNpdt =Xk wmp+p(k) �Np+ +Nm(k)(Np+ �Np)��Xk wmpp�(k) �Np +Nm(k)(Np �Np�)� :(6.48)Transferring from the disrete notation to the ontinuous one again and expressing the di�ereneof the two sums in the previous relation as a derivative times the interval k, the seond quasi-linear equation desribing bak-reation of partiles distribution to the wave emission/absorptionproesses readsdf(p)dt = Z �hk � ��p �wm(p;k) �f(p) +Nm(k) �hk � �f(p)�p �� d3k(2�)3 : (6.49)Transition rates alulation To make equations (6.47) and (6.49) meaningful for pratialomputation one has to alulate the emission rate wm(p;k) . It an be done when one re-interprets the power radiated pm(k) onsidered in the setion 6.2.1 as ontinuous proess to be{ aording to quantum physis ideas { the series of quanta emissions with emission probabilityper unit time w(p;k), i.e.: pm(k) = �h!m(k) wm(p;k)Thus, using relations (6.36) and (6.37) the emission rate an be expressed as:wm(p;k) = lim�!1 1� � 1�h!m(k) RmE (k)"0 ���em(k) � jext(k; !m(k))���2� (6.50)In the fore-free ollision-less plasmas partile moves on retilinear trajetory. Consequently, theextraneous urrent density in the equation (6.50) is to be identi�ed with that given by equationwith retilinear trajetory r(t) = r0 + vtinserted. Now usingj(k; !) = q Z 11 dt Z d3r exp [�i(k � r)� !t℄v(t)Æ3(r� r(t)) = q Z 11 dtv(t) exp [�i(k � r(t))� !t℄;j(k; !) = qv exp (�ik � r0) Z 11 dt exp [i(! � k � v)t℄ = 2�qv exp (�ik � r0)Æ(! � k � v);[Æ(!)℄2 = lim�!1 �2�Æ(!);alulation gives wm(p;k) = 2�q2RmE (k)�h!m(k) "0 jem(k) � vj2 Æ (!m(k)� k � v) (6.51)Absorption oeÆient As was already mentioned, the �rst quasi-linear equation (6.47) ex-presses the emission or absorption of wave quanta due to medium desribed by distributionfuntion. The rate of oupation number hange an be separated to two parts { one indepen-dent of the oupation number itself�dNm(k)dt �sp = Z wm(p;k) f(p) d3p



64 Chapter 6: PLASMA EMISSION PROCESSESand one linearly proportional to it�dNm(k)dt �ind = �m(k)Nm(k)where m(k) reads m(k) = � Z wm(p;k) �hk � �f(p)�p d3p: (6.52)As the supersripts over eah part indiate the former part desribes spontaneous or thermalwave emission whereas the latter belongs to indued proesses. The quantity m(k) is absorp-tion oeÆient by de�nition and its sign depend on what proess prevails { whether absorptionor stimulated emission of waves. In ase of negative values also the term growth rate is often used.It is lear from expression (6.52) that in ase of positive slope of distribution funtion f(p) in thediretion of wave-vetor k the absorption oeÆient m(k) an reah negative values implyingso self-ampli�ation or instability of waves. The positive slope orresponds to inequalityNp+�hk > Npin the formula (6.45), whih is only disrete form of the �rst quasi-linear equation (6.47), and thusinverse population of energeti levels is required (in unmagnetised plasmas) for self-ampli�ationto work. This feature of the theory of indued proesses in plasmas makes it very lose to, nowalready lassial, physis of lasers as was already mentioned in the introdution to this setion.Probably the most known examples of ampli�ation of waves due to suh inverse population ofenergeti levels in the �eld of plasma physis are the \Bump-in-Tail" or \Two-stream" instabil-ities of Langmuir waves. The positive slope of the partile distribution funtion is reahed byenergeti partile stream propagating through the thermal bakground plasmas in this ase.Then, the resonant ondition ontained impliitly due to Æ-funtion in the relation (6.51) anbe ful�lled only if v � v' (6.53)where v' = !(k)=k is the wave phase veloity. Sine refrative index for eletromagneti wavesnT (k) < 1 for all k-vetors, negative absorption of this mode is forbidden in the ase of unmag-netized plasmas as a onsequene of apparent inequalityv < Hene, the mode onversion between waves that an satisfy the ondition (6.53), and theirampli�ation is therefore possible, and the eletromagneti ones is required for plasma emissionproess to work.6.5 Coherent proessesThe weak-turbulene theory just reviewed in the previous setion is apable to desribe manytypes of partile-wave or wave-wave interations, provided that wave �eld is suÆiently desribedby oupation numbers { i.e. that wave phases are unimportant. As was shown, suh a onditionis ful�lled in ase of broad-band wave distributions as after the oherene time � the phases ofwaves are ompletely mixed. Nevertheless, sometimes the region of unstable waves in the k-spaeis so narrow, that before the phase mixing state is reahed the waves have grown up substantially.For suh ases the weak-turbulene theory is inappliable and its departure from the reality anbe separated into two kinds of problems:



6.5. Coherent proesses 65� the theory predits qualitatively some proess (e.g. instability) to be running, but furtherquantitative analysis gives wrong results { usually predited growth rates of unstable wavesare lower than in reality.� the weak-turbulene version of oherent proess does not exist at all.Hene, proesses where also wave phases are important have to be treated another way. Un-fortunately, the general theory of oherent proesses { as a ounterpart of the weak-turbulenetheory { has not been established yet. One partiular ase is disussed in the following.6.5.1 Strong wave turbuleneStrong wave turbulene is term for non-linear wave-wave interations that an not be suÆientlydesribed within the weak-turbulene theory just due to great importane of wave phases forproesses involved. The �rst desription of oherent wave-wave interations is that by Zakharovwho treated the non-linear interation between Langmuir and ion-sound waves. His approahwas roughly as follows:Firstly, let us onsider linear Langmuir and ion-sound waves in homogeneous plasmas. The timeevolution of plasma parameters variations in these waves an be derived most simply within theplasma two-uid theory or alternatively they an be guessed Fourier transforming the dispersionrelations (6.29) and (6.30) for relevant waves into the oordinate spae. Hene, the eletri �eldvariation in Langmuir waves is governed by equation�2E�t2 � 3V 2e 4E+ !2peE = 0 (6.54)and similarly the eletron density variation n in the ion-sound waves ful�ls (for wavelengths�� �De) relation �2n�t2 � 2s4n = 0: (6.55)Now suppose that both wave modes propagate through plasma simultaneously. Due to ion-soundwave the eletron density is now distributed non-uniformly and as a onsequene of the plasmafrequeny de�nition (6.25) the last term !2peE in the eq. (6.54) depends expliitly on time andspae. Hene, the equation (6.54) an be rewritten in the form�2E�t2 � 3V 2e 4E+ !2peE = �!2pen(r; t)n0 E (6.56)where the plasma frequeny !pe is now re-interpreted as that onneted with the bakgroundaverage density n0. Equation (6.56) desribes Langmuir wave eletri �eld evolution under theinuene of ion-sound density perturbation. The e�et of density distribution an be estimatedqualitatively even without solving it by analogy with the Shr�odinger wave equation desribingan eletron inside the rystal lattie (.f. equation 6.59). Identifying the total density n0+n withrystal single-eletron potential one �nds, that the Langmuir eletri �eld tends to onentrateitself in the density holes, similarly as eletron probability density in the rystal is high in plaesof low potential (in the viinity of ions loations).On the other hand, non-homogeneous (averaged over wavelength) eletri �eld inuenes densitydistribution due to non-linear ponderomotive fore FNL whose volume density is (e.g. ??):fNL = �!2pe!2 grad "0hE2i2 : (6.57)



66 Chapter 6: PLASMA EMISSION PROCESSESwhere h i denotes the fast-time (on sales of several plasma period) averaging. As a onsequene,a soure term has to appear on the R.H. side of equation (6.55), i.e.�2n�t2 � 2s4n = 1mi div fNL: (6.58)Sine hanges of eletri �eld amplitude and ion-sound density variations are slow in omparisonwith plasma frequeny it is onvenient to separate the instantaneous Langmuir eletri �eldtime evolution into the fast (on plasma frequeny) variations and the slowly varying omplexamplitude E(r; t) = 12 hE(r; t) � exp(�i!pet) + E(r; t) � exp(+i!pet)iUsing this separation and relation (6.57) for ponderomotive fore, further omitting the seondderivative of slowly hanging omplex amplitude E(r; t) the equations (6.56) and (6.58) an berewritten in the form: i�E�t + 3V 2e2!pe4E = !pe n2n0E (6.59)�2n�t2 � 2s4n = "04mi 4jEj2: (6.60)The relations (6.59, 6.60) are known as set of Zakharov equations and desribe oherent non-linear interations of Langmuir and ion-sound waves.



Chapter 7Beams and two-stream instabilitya) Beams in the solar atmosphereSee �le beams.psDoplnit obrazky do SPA3.texRefereneKarlik�y, M: 1997, E�ets of partile beams in the solar atmosphere, Spae Si. Rev. 81, 143-172.b) Two-stream instabilityHere the CGS unit system is used.Dispersion equationLet at times t < 0 a plasma exists in a stationary state, i.e. the plasma density, plasma veloity,magneti and eletri �elds are:n = n0;v = v0;B = B0;E = E0: (7.1)Then at times t > 0 small perturbations appear:n = n0 + n0;v = v0 + v0;B = B0 +B0;E = E0 +E0: (7.2)Let us assume that these perturbations have periodi form in time as:X 0(t; r) = X 0(r) exp(�i!t); (7.3)where r is the position and ! is the frequeny.Then the mass onservation, momentum and Maxwell equations an be linearized. Thus, a setof equations for variables of zero-, �rst- and higher-orders of magnitude an be derived. The setof equations with �rst-order variables follows:�i!n0 +r � (n0v0 + n0v0) = 0;�i!v0 + (v0r)v0 + (v0r)v0 = em(E0 + 1 (v0 �B0) + 1 (v0 �B0));r�B0 = 4� e(n0v0 + n0v0)� i! E0;67



68 Chapter 7: BEAMS AND TWO-STREAM INSTABILITYr�E0 = i! B0;r �E0 = 4�en0r �B0 = 0; (7.4)where the Fourier transform in time (�=�t! �i!) was done.Osillations of homogenous plasmaLet us assume a 1-D ase with B0 = 0;v0 = 0;rn0 = 0 and the spatial perturbation in theform: X 0(r) � exp(ikr). Then from the above mentioned equations follow:�i!n0 + n0ikv0 = 0;�i!v0 = emE0;ikE0 = 4�en0;Now, from these equations the dispersion equation for so alled plasma osillations an be writtenas: !2 = 4�e2n0m : (7.5)Eletromagneti waves in homogenous plasmaFurthermore we an write r�B0 = 4� en0v0 + 1 �E0�t ; = ��tr� �B0�t = 4� en0�v0�t + 1 �2E0�t2 ;�r�r�E0 = 4� en0 emE0 + 1 �2E0�t2 ;�k2E0 = !2p E0 � !2 E0;!2 = !2p + k22; (7.6)whih is the dispersion equation for the eletromagneti waves in the plasma without statimagneti �eld.Dispersion equation for plasma with moving omponentsLet us onsider a potential perturbation of the eletri �eldE = �r ; E = �ik ;



69and let us look what a perturbation of the eletri harge density �e auses the eletri �eldperturbation, i.e. let us look for the funtion � in the relation �e = � .In this ase the linearized MHD equation has a following form:�i!n0 +r � (n0v0 + n0v0) = 0;�i!v0 + (v0r)v0 + (v0r)v0 = emE0;Using rv0 = 0 and E0 = �r 0 the equation an be rewritten into�i!n0 + in0kv0 + in0kv0 = 0;�i!v0 + v0ikv0 = �i emk 0;Now, we an express the density and plasma veloity perturbations asn0 = n0kv0! � kv0 ; v0 = ek 0m(! � kv0) ;Combining these equations the perturbation of harge density is�e = n0e = � 0 = e2n0k2m(! � kv0)2 0; (7.7)i.e. the funtion � for some spei� plasma omponent � an be expressed as�� = e�n�0k2m�(! � kv�0 )2 : (7.8)Let us put these results into the Poisson equation. Thenk2 = 4�X� ��e ;k2 = 4�X� �� ;(1� 4�k2 X� ��) = 0 (7.9)In the last relation the term in brakets is the dispersion equation whih an be formally writtenas �0 = 1� 4�k2 X� ��; (7.10)where ontributions of moving omponents of plasma into the dispersion equation are��0 = �4�k2 �� = � (!�p )2(! � kv�0 )2 : (7.11)



70 Chapter 7: BEAMS AND TWO-STREAM INSTABILITYBeam instabilitiesa) Instability of two ounter-streaming beamsLet us onsider two ounter-streaming beams of the same density, i.e.n01 = n02 = n0; v01 = �v02 = v: (7.12)in this ase the dispersion equation is1� !2p(! � kkv)2 � !2p(! + kkv)2 = 0: (7.13)This equation leads ti the bi-quadrati equation with the following solutions:! = �q(kkv)2 + !2p � !p(!2p + 4k2kv2)1=2: (7.14)If (kkv)2 + !2p < !p(!2p + 4k2kv2)1=2;i.e. if (kkv)4 + 2(kkv)2!2p + !4p < !2p(!2p + 4k2kv2);and i.e. if kk < p2!p=v then there is one solution with Im ! > 0, whih for the perturbation inthe form X(t) � exp�i!t means an instability. Furthermore, if kk � !p=v then the term underthe root an be written as(kkv)2 + !2p � !2p(1 + 2k2kv2!2p ) = (kkv)2 � 2(kkv)2;whih gives the growth rate of the instability asIm ! =j kkv j : (7.15)On the other hand, the maximum growth rate an be derived as follows:ddkk ((kkv)2 + !2p � !p(!2p + 4k2kv2)1=2) = 0;2v2kk � !p2 8kkv2(!2p + 4k2kv2)1=2 = 0;!2p + 4k2kv2 = 4!2p;kkmax = p32 !pv : (7.16)Now, putting this kkmax into the relation for ! (Eq.7.14), the maximum growth rate ismax = !p=2: (7.17)



71b) Beam-plasma instabilityLet us assume a beam whih density is muh lower than that of bakground plasma (n1 � n0).Then the dispersion equation is 1� !2pe!2 � �!2pe(! � kkv)2 = 0: (7.18)where !2pe = 4�e2n0=me, � = n1=n0 � 1, v is the beam veloity.Solutions:a) The non-resonant ase, i.e. the ase with !pe 6= kkv.The solution an be derived as follows:(! � kkv)2 � (! � kkv)2!2pe!2 � �!2pe = 0;(! � kkv)2(1� !2pe!2 ) = �!2pe;(! � kkv)2 = �!2pe 11� !2pe!2 ;! � kkv = �q�!2pe 1q1� !2pe!2 ;! = kkv �p� !per1� !2pe(kkv)2 ; (7.19)where, in the last equation, the approximate relation ! ' kkv was used.As an be seen, if kkv < !pe the solution is omplex and the growth rate is = p� !peq(!pe=kkv)2 � 1 ; (7.20)b) The resonant ase, i.e the ase with ! ' kkv ' !pe.Let us assume that the frequeny orretion isj !(1) j�j !pe � kkv j;Then the dispersion equation an be written as1� !2pe!2 � �!2pe(!pe + !(1) � kkv)2 = 0; = � !2!2 � !2pe � �!4pe(!(1))2 = 0:



72 Chapter 7: BEAMS AND TWO-STREAM INSTABILITYUsing now !2 � (!pe + !(1))2 = !2pe + 2!(1)!pe;we an ontinue in the simpli�ation of the dispersion equation as follows2!(1)!pe � �!4pe(!(1))2 = 0;((!(1))3 � �!2pe2 = 0;whih solution is x1;2;3 = �1=3!pe21=3 (os�+ i sin�)1=3; � = 0; 2�; 4�Thus the orretion of real frequeny and growth rate of the instability (�=3 = 4�=3) areRe!(1) = �!pe�1=324=3 ; (7.21) = !pep3�1=324=3 : (7.22)) Buneman instabilityIn this ase the eletron plasma omponent is in a relative motion to the proton omponent. Inthis ase the dispersion equation is1� !2pe(! � kkv)2 � !2pp(!)2 = 0; (7.23)where !2pp=!2pe � 1. Using the same proedure as in the previous ase for � = me=mp (theeletron-proton mass ratio) the resonant growth rate an be obtained as = !pep3(me=mi)1=324=3 : (7.24)d) Kineti beam instabilityIf a beam has some dispersion in veloities vT1 whih is greater than �1=3v, where � = n1=n0 isthe ratio of beam and plasma densities and v is the beam veloity, then the results for the abovementioned beam-plasma instability are not valid and the kineti approah to this instability isneessary. In this ase the instability has a maximum for k � !pe=v with the growth rate ' !pe2 �� vvT1�2 : (7.25)Comparing the relations (1.22) and (1.25) we an see that the growth rate of the kineti insta-bility is lower than that of the MHD one, and the both growth rates are equal if vT1 = �1=3v.



Chapter 8Numerial partile odeAt the end of �fties and at the beginning of sixties of the 20-entury John Dawson and OsarBuneman started to simulate a plasma by a big amount of numerial partiles whih wereeletromagnetially interating. While at the beginning many sientists expressed septiism tothis approah, now it is well developed researh �eld.To ful�ll basi harateristis of the plasma it is neessary to have a system whih is large enough(its length L� �D) and the number of numerial partiles in the Debye sphere is muh greaterthan 1. It needs enormous amount of partiles, espeially in 3-dimensional ase. Muh bettersituation is in 1-D ase and that is why all studies in this �eld started with the 1-D systemwhere the number of partiles in the Debye sphere is ND = n�D only; n is the plasma partiledensity. But generally, a relatively small number of partiles in the system generates high levelof noise.In priniple, it is possible to build a numerial piee of plasma onsidering partiles whih interatwith all other partiles, but this numerial approah is very time and memory onsuming.Therefore a modi�ed method alled as partile-in-ell is used.As an example, in the following, let us present a simple 1-D eletrostati ode. A sheme of thisnumerial ode is shown in Fig. 8.1. Partiles are distributed in the system of the length L whihis muh greater than �D; usually L � 100�D. In eah Debye length is as minimum 100 eletronsand 100 protons forming thus a quasi-neutral plasma. As known from numerial experimentsthese numbers are suÆient to ful�lled the ondition about a big number of partiles in theDebye sphere. Thus in our system simulating plasma we have about 10000+10000 numerialpartiles. Although, the eletron-proton ratio is 1836, in numerial simulations this ratio isusually smaller in order to aelerate some plasma proesses. On the other hand, this fat needsto be taken into aount when we interpret results of numerial simulations.First in the ode, the initial state of the system needs to be generated; every partile needsto have initial position and veloity. Positions of partiles an be regular or by some waymodi�ed, e.g. by the presene of initial eletrostati wave in some tasks. In the ase of oldplasma all veloities are zero, otherwise Maxwell distribution of partiles orresponding to sometemperature is generated. Then we need to ompute eletrostati fores among partiles. Asmentioned above a diret method through the Coulomb law is not used in suh a model. Here,eletrostati fores are omputed as a di�erene of the eletrostati potential omputed fromPoisson equation. For this purpose the harge density is alulated on the grids (hundredsgrids per system) using some weighting proedure. Knowing the eletri harge distributionin the system the Fourier transform is applied and the Poisson equation is solved in k-spae.Then the inverse Fourier transform is made, and from the eletrostati potential the eletri�eld is omputed. Beause the fast Fourier transform is used then it is useful to use powersof 2n (128, 256, 512 ..) for the number of system grids. Furthermore, usually the periodiboundary onditions are used. Using now further weighting proedure the fore on every partile73
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Fig. 8.1: One time step in a partile simulation program. The partiles are numbered i = 1,2,...., NP; the gridindies are j.is alulated from the eletri �eld omputed on grids. Then solving Newton equation we obtainnew positions and new veloities of all partiles, and the full time step �t is �nished and furtherstep an start. During omputations it is important to reord some important variables fordiagnosti purposes.Now let us desribe the 1-D eletrostati ode in more details.Integration of the equations of motionOne ommonly used integration is the leap-frog method. The use of high-order methods (e.g.Runge-Kutta) is possible, but they multiply the operations taken for eah partile.The two �rst-order di�erential equations to be integrated separately for eah partile aremdvdt = F; (8.1)dxdt = v; (8.2)where F is the fore. These equations are replaed by the �nite-di�erene equationsmvnew � vold�t = Fold; (8.3)xnew � xold�t = vnew: (8.4)In the leap-frog method values of x and v are not known at the same time, they are shiftedeah other by �t=2 (Fig. 8.2). The user must show are in at least two ways: �rst, initialonditions for partile veloities and positions given at t = 0 must be hanged; we push v(0)bak to v(��t=2) using the fore F alulated at t = 0; seond, the energies alulated from v(kineti) and x (potential, or �eld) must be adjusted to appear at the same time.The leap-frog method has error, with the error vanishing as �t ! 0. Applying this methodto integration of a simple harmoni osillator of frequeny !0, we will �nd that there is noamplitude error for !0�t � 2 and that the phase advane for one step is given by!0�t+ 124(!0�t)3 + ::: (8.5)
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Fig. 8.2: Sketh of leap-frog integration method showing time-entering of fore F while advaning v, and ofv while advaning x.Remark: This relation follows from two half-time steps and Taylor series for one half step assin�!0�t2 � � !0�t2 � 16 �!0�t2 �3 + ::: (8.6)The error terms ditate a hoie of !0�t � 0:3 in order to observe osillations or waves for sometens of yles with aeptable auray.Although the numerial system is 1-dimensional, in the limited sense (with the stati magneti�eld B perpendiular to the x-oordinate of the system) we an onsider two omponents ofveloities (vx; vy). In this ase the fore F has two parts,F = Feletri + Fmagneti = qE+ q(v �B): (8.7)Here the eletri �eld E and magneti �eld B are to be alulated at the partile position.Hene, using a spatial grid, we must interpolate E and B from the grid to the partile. Aswe will see later, the eletri fore on a partile will depend not only on the distane to otherpartiles (physial) but also on the position within the ell (nonphysial).For our 1-D ase, let us onsider the partile displaement to be along x, and that we haveveloities vx and vy, with a uniform stati magneti �eld B0, along z (Fig. 8.3). The q(v �B)fore is simply a rotation of v; that is, v does not hange in magnitude. However, the qE = qExxfore does alter the magnitude of v (vx); Ey =0. Hene, a physially reasonable sheme whihis entered in time is as follows (with t0 and t00 as dummy variables, t��t=2 < t0 < t00 < t+�t=2):Half aeleration vx(t0) = vx �t� �t2 �+ � qm�Ex(t)��t2 � (8.8)vy(t0) = vy �t� �t2 �Rotation
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 vx(t00)vy(t00) ! =  os!�t sin!�t� sin!�t os!�t ! vx(t0)vy(t0) ! (8.9)Half aeleration vx �t+ �t2 � = vx(t00) + � qm�Ex(t)��t2 � (8.10)vy �t+ �t2 � = vy(t00)The angle of rotation is �� = �!�t (8.11)where ! is the ylotron frequeny.

Fig. 8.3: The vx and vy plane, showing the q(v�B) fore normal to v, whih results in a rotation of v, withno hange in speed magnitude with d�=dt < 0 for (q=m)> 0, B0 > 0.Integration of the �eld equationsStarting from the harge density as assigned to the grid-points, we now obtain the eletri �eld.In our 1-D ase we need to solve the following di�erential equationsE = �r�; Ex = ����x; (8.12)r � E = ��0 ; �Ex�x = ��0 ; (8.13)whih are ombined to obtain Poisson's equationr2� = � ��0 ; �2��x2 = � ��0 : (8.14)



77One approah is solve the �nite di�erene versions of these equations asEj = �j�1 � �j+12�x (8.15)�j�1 � 2�j + �j+1(�x)2 = ��� : (8.16)A very powerful approah for periodi systems is to use a disrete Fourier series for all gridquantities. This approah also provides spatial spetral information on �, �, and E whih isuseful in relating results to plasma theory, and whih also allows ontrol (smoothing) over thespetrum of �eld quantities.In suh types of omputations the fast Fourier transform is e�etively used. This transformationallows us to obtain �(k) from �(k) from simple equation (transformed Poisson equation)�(k) = �(k)�0k2 : (8.17)The next step is to take the inverse Fourier transform of �(k) in order to obtain �(x) and thenE(x) using equation (8.15).The solution using a �nite Fourier series starts from the harge densities at the grid points, withvalues �(Xj); j = 0, 1, 2, ..., NG -1 for a total of NG values. Letting the grid funtions G(Xj)(standing for �eld or potential or harge density) be periodi, G(Xj) = G(Xj + L), then the�nite disrete Fourier transform is (sum on Xj = j�x)G(k) = �xNG�1Xj=0 G(Xj)e�ikXj : (8.18)The inverse transform is (the sum is on k = n(2�=L))G(Xj) = 1L NG=2�1Xn=�NG=2G(k)eikXj ; (8.19)whih produes NG distint values of G(Xj).Weighting proeduresIn the numerial ode, it is neessary to alulate the harge density on the disrete grid pointsfrom the ontinuous partile positions and then to alulate the fore at the partile positionsfrom the �elds known on grid points. There are several methods of suh weighting.Zero-order weightingIn this proedure (Fig. 8.4), we simply ount the number of partiles within distane ��x=2(one ell width) about the jth grid point and assign that number [all it N(j)℄ to that point,that is, the grid density is simply nj = N(j)=�x. The ommon name for this weighting isnearest-grid-point. The eletri �eld to be used in the fore is that at Xj , for all partiles in thejth ell.As a partile moves into the jth ell (through ell boundaries at x = Xj��x=2), the grid densitydue to that partile jumps up; as the partile moves out (x > Xj +�x=2 or x < Xj ��x=2),the grid density jumps down. We an see two e�ets. One is that the partile appears to havea retangular shape with a width of �x. This leads us to think that we have a olletion of



78 Chapter 8: PARTICLE CODES�nite-size partiles; hene, the physis observed will be that of suh partiles rather than thatof point partiles. Beause lose enounters between plasma partiles are rare (i.e., for manypartiles in a Debye length, the plasma parameter ND � 1), this new physis hardly alters thebasi plasma e�ets to be studied. The seond e�et is that the jumps up and down as a partilepasses through a ell boundary will produe a density and an eletri �eld whih are relativelynoisy both in spae and time; this noise may be intolerable in many plasma problems thereforea better weighting is neessary to look for.

Fig. 8.4: Zero-order partile and �eld weighting, also alled nearest-grid-point. Partiles in the jth ell, thatis, with positions xi�Xj ��x=2, are assigned to Xj to obtain grid density n(Xj). All of these partiles are atedon by the �eld at Xj , E(Xj). b) The density nj(Xj) at point Xj due to a partile at xi, as the partile movesthrough the ell entered on Xj . This density may be interpreted as the e�etive partile shape.First-order weightingThis proedure smooths the density and �eld utuations, whih redues the noise (relativeto zero-order weighting), but requires additional expense in aessing two grid points for eahpartile, twie per step. The harged partiles seem to be �nite-size rigid louds whih may passfreely through eah other. The model is alled loud-in-ell (Fig. 8.5). For total loud harge ofq, the part assigned to j isqj = q ��x� (xi �Xj)�x � = qXj+1 � xi�x ; (8.20)and the part assigned to j + 1 is qj+1 = q �xi �Xj�x � : (8.21)The net e�et is to produe a triangle partile shape whih has width 2�x.There are also higher-order weighting, but at the ost of more omputations.Initial stateNow, few words about initiating the program. In all ases we need to hoose:� The number of partiles and grid ells.� The weighting.� The desired initial distribution funtions of eletrons, protons and further omponents(e.g. a beam)(random or ordered).
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Fig. 8.5: First-order partile weighting. The �nite-size harged partile, or loud, is one ell wide, with enterat xi. This weighting puts that part of the loud whih is in the jth ell an Xj , fration (a), and that part whih isin the (j+1)th ell at Xj+1, fration (b). This weighting is the same as applying nearest-grid-point interpolationto eah elemental part. (b) The grid density nj(xi) at point xi as the partile moves past Xj , again displayingthe e�etive partile shape.The next step is to plae the partiles in phase spae (x;v) so that the problem desired isproperly set up to run.A old, uniform periodi plasma of mobile eletrons and immobile protons (Mp=me ! 1) issimplest. The eletrons an be put in uniformly. But sometimes we need in the initial state aplasma wave. It an be done by perturbing the uniform positions xi0 byxi(t = 0) = xi0 + xi1 os(ksxi0); (8.22)where kmin � ks � kmax is some wave vetor for whih we want the plasma behavior of thesystem.DiagnostisFor an interpretation of numerial results the diagnosti output of the ode is very important.Information of our interest an be as follows:a) For partiles:� Phase spae, vx versus x.� Veloity spae, vy versus vx.� density in veloity, f(v) versus v, or f(v2) versus v2, or ln(f(v2)) versus v2.b) For grid quantities:� Charge density �(x) versus x or partile density n(x) versus x.� Potential �(x) versus x.� Field E(x) versus x.� distribution of eletrostati energy 1=2�k��k versus k.Furthermore, the result at the end of a run will onsist of plots of histories of various quantitiesversus time, suh as:



80 Chapter 8: PARTICLE CODES� Eletrostati energy Pk 1=2�k��k.� Partile kineti energy by speies Pi 1=2miv2i .� Partile drift energy Pi 1=2mi < vi >2.� Partile thermal energy Pi 1=2mi(< v2i > � < vi >2).� Total energy, eletrostati plus partile.� Mode plots, 1=2�k��k, for eah k with plots versus ! - dispersion urves.



Chapter 9Solar radio bursts9.1 Classi�ation of solar radio burstsSolar radio bursts are observed in a very broad range of frequenies (see Fig. 9.1). Based ontheir spetral and time harateristis they are lassi�ed into �ve main lasses:a) Type III radio burstsAn example of these bursts is shown in Fig. 9.2. These bursts are haraterized by very fastfrequeny drifts (� 20 MHz s�1 in the metri range) on the dynami radio spetrum. Theobserved drifts orrespond to exiter speeds between 0:2 and 0:6, where  is the speed of light.These bursts are observed at the beginning of solar ares, in so alled impulsive phase and theyare onsidered as a signature of eletron beams propagating from the are site upwards into theinterplanetary spae.b) Type II radio burstsAn example of this burst is shown in Fig. 9.3. These bursts are haraterized by relativelyslow frequeny drifts (� 1 MHz s�1 in the metri range) on the dynami radio spetrum. Theobserved drifts orrespond to exiter speeds between 500 km s�1 and 2000 km s�1. These burstsare observed after the impulsive phase and they are onsidered to be a signature of the MHDare shok propagating from the are site upwards into the interplanetary spae.) Type IV radio burstsThese broadband radio bursts (or ontinuum bursts) are typial bursts observed during solarares, espeially in long-lasting ones. While the high-frequeny type IV bursts are generated bythe gyro-synhrotron mehanism of superthermal eletrons trapped in magneti are loops, onlower frequenies (those with relatively narrow band emission) are probably generated by theplasma emission proesses.There are many �ne strutures of these bursts, see the following examples.d) Type I radio bursts - noise stormThese bursts express ativity in solar ative regions. They are observed in the metri range onlyand they onsist of a ontinuum radiation and a loud of short-lasting (< 1 s) and narrowband(� 5 MHz) bursts.
81



82 Chapter 9: SOLAR RADIO BURSTSa) Type V radio burstsThe type V burst is similar to the type III burst, but its duration is longer (� 1 min). It isbelieved that some eletrons of fast eletron beam are trapped for some time in oronal magnetitrap and thus the radio emission is prolonged.Radio bursts during stellar aresIn Fig. 9.4 an example of the dynami radio spetrum of the AD Leo star are in the deimetrirange is shown for omparison.

Fig. 9.1: Shemati representation of di�erent solar radio bursts.
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Fig. 9.2: Type III solar radio burst observed at Tremsdorf Observatory, Germany on May 17, 1999 (ourtesyDr. A. Klassen).Examples of solar radio burstsIn this hapter new results and new types of solar radio bursts are presented.a) High-frequeny zebrasSee �le zebras.psReferene:Sawant, H.S., Karlik�y, M., Fernandes, F.C.R., Ceatto, J.R.: 2002, Observation of harmoni-ally related solar radio zebra patterns in the 1-4 GHz frequeny range, Astron. Astrophys. 396,1015-1018.b) Narrowband dm-spikesSee �le spikes.psReferene:B�arta, M., Karlik�y, M.: 2001, Turbulent plasma model of the narrowband dm-spikes, Astron.Astrophys. 379, 1045-1051.) Lae burstsSee �le laes.ps



84 Chapter 9: SOLAR RADIO BURSTS

Fig. 9.3: Dynami spetrum of type II solar radio burst observed at Tremsdorf Observatory on Otober 22,1999 (ourtesy Dr. A. Klassen).Referene:Karlik�y, M., B�arta, M., Ji�ri�ka, K., M�esz�arosov�a, H., Sawant, H.S., Fernandes, F.C.R., Ceatto,J.R.: 2001, Radio bursts with rapid frequeny variations - Lae bursts, Astron. Astrophys. 375,638-642.
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Fig. 9.4: Deimetri radio spetrum of the AD Leo star obtained by Areibo radioheliograph.



Chapter 10Solar ares and oronal massejetionsExamples of solar are studiesa) Magneti �eld reonnetionSee �le reonnetion.psReferene:Karlik�y, M.: 2002, Plasma resonane surfaes in the magneti �eld reonnetion and radio �nestrutures, Solar Physis, in press.b) Plasmoid ejetionSee �le plasmoid.psReferene:Karlik�y, M., F�arn��k, F., M�eszarosov�a, H.: 2002, High-frequeny slowly drifting strutures insolar ares, Astron. Astrophys. 395, 677-683.) Impat polarization of optial hromospheri linesSee �le impat.ps
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87Referene:Karlik�y, M., Henoux, J.C.: 2002, Impat H-alpha line polarization and return urrent, Astron.Astrophys. 383, 713-718.) Flare hard X-rays from neutral beamsSee �le nhardx-ray.pdfReferene:Karlik�y, M., Brown, J.C., Conway, A.J., Penny, G.: 2000, Flare hard X-rays from neutralbeams, Astron. Astrophys. 353, 729-740.) Return urrent in solar aresSee �le return.pdfReferene:Karlik�y, M., H�enoux, J.C.: 1992, Return urrent losses in pulse beam heating of the solaratmosphere, Astron. Astrophys. 264, 679-685.Priest, E., Forbes, T.: 2000, Magneti reonnetion: MHD theory and appliations, CambridgeUniversity Press, Cambridge, UK.



88 Chapter 10: SOLAR FLARES AND CORONAL MASS EJECTIONSGallery of the models of solar ares and oronal mass ejetion

Fig. 10.1: Energies in large and small solar ares.
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Fig. 10.2: Shemati drawing of the ollision time vs. height of an eletron moving at the mean thermalveloity in the quiet solar atmosphere. The relevant plasma parameters are from standard models and are alsoshown (dashed). The hydrogen density inludes both neutral atoms and ions.



90 Chapter 10: SOLAR FLARES AND CORONAL MASS EJECTIONS

Fig. 10.3: Charateristi pro�le of a solar are in various wavelengths.
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Fig. 10.4: Two senarios whih have been proposed for opening the magneti �eld during large solar aresand oronal mass ejetions. (a) In the �rst senario an ideal MHD proess hanges the losed-�eld on�guration(1) into an open on�guration (2) during the impulsive phase, and reonnetion re-loses the �eld (3) during thegradual phase. (b) In the seond senario an ideal MHD proess reates a relatively short urrent sheet withoutopening the �eld, but magneti ux an still esape into spae if rapid reonnetion ours in this sheet. If thereis no input of the magneti energy during the eruption, then the magneti energy ontinuously dereases duringboth the impulsive and gradual phases of the are, as shown in ().
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Fig. 10.5: Quasi-stati evolution of an axially symmetri arade in response to shearing of its footpoints. (a)The initial �eld is a Sun-entered dipole whih (b) evolves into a fore-free �eld when its footpoints in the upperand lower hemispheres are rotated in opposite diretions. () After a rotation of 126o, the �eld beomes fullyopened as long as the di�usivity (�) remains zero. (d) A plot of the orresponding time evolution of the totalenergy divided by the potential energy.
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Fig. 10.6: A ux-rope model. (a) Ideal MHD evolution of a two-dimensional arade ontaining an unshieldedux rope of height h as the soure separation (2�) derease. (b), () The ux rope and arade move upwardswhen the two photospheri �eld soures are pushed too lose to one another. (d) In the absene of reonnetionthe eruption leads to a new equilibrium ontaining a urrent sheet.
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Fig. 10.7: Resistive MHD simulation based on the two-dimensional ux-rope model. White urves are magneti�eld lines, while the grey sale orresponds to temperature variations. White regions have the highest temperature(> 108 K in the absene of ooling proesses),while blak regions have the lowest. The magneti Reynolds numberis about 200, many orders of magnitude smaller than expeted for the Sun.
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Fig. 10.8: (a) Trajetories of the shok, ux rope, and X-line for the simulation shown in the previous �gure.(b) The eletri �eld at the X-line as a funtion of time.
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Fig. 10.9: (i) Twisted ux tube showing three types of �eld line I, II, and III. (ii) Quasi-separatrix layersviewed from above together with sample �eld lines of types (a) I (dotted urve), (b) III (dashed-dotted urve)and () II (solid urve) and (d) the onnetivity of points on the quasi-separatrix layers.
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Fig. 10.10: Perspetive view of a 3-D twisted on�guration with a �nite spatial extension and without nullsor �eld line tangent to the photosphere. Separatries are no longer present, but there is a very thin volume (QSL)where the �eld line onnetivity hanges rapidly. The intersetion of the QSL with the lower boundary (planez = 0) is shown by an iso-ontour of the funtion N (see hapter about onnetivity). This intersetion formstwo elongated strips on both sides of the boundary inversion line (IL). From these strips the QLS extends above,following magneti �eld lines (the omplexity of this elongated volume preludes a lear drawing of it). Tworepresentative sets of �eld lines have been inluded; they belong to the periphery of the twisted ux tube and tothe lower arade (Demoulin, 1997).
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Fig. 10.11: A shemati representation of an ambient oronal streamer (a) in whih a oronal mass ejetion(b) originates.
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Fig. 10.12: How �eld line shrinkage is de�ned for are loops. Shrinkage is simply a measure of the hange inshape of a �eld line due to its losure by reonnetion.
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Fig. 10.13: Shemati diagram of a are loop system formed by reonnetion in the supermagnetosoni regime.This regime is most likely to our in the early phase of a are when the reonneting �elds are strong. It hasboth upward- and downward- direted jets, but only the region below the downward jet has high-density plasma,beause in two-dimensional models hromospheri evaporation ours on just those �eld lines that lie below theX-line. Solid urves indiate boundaries between various plasma regions, while dashed ones indiate magneti�eld lines.
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Fig. 10.14: Shemati diagram of a are loop system formed by reonnetion in the submagnetosoni regime.This regime is most likely to our when the reonnetion �elds are weak. Here the downward jet of the previous�gure is replaed by a weak bifurated ow along the �eld lines mapping from tip of the urrent sheet to thehromosphere. Beause of the weaker �elds, the evaporation proess is greatly redues and the plasma density inthe loops beomes too low to trigger a thermal ondensation. However, ondensation remnants may remain lowerdown as a result of an earlier supermagnetosoni phase.
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Fig. 10.15: Proesses in are loops.

Fig. 10.16: Shemati model of impulsive hard X-ray, radio and EUV soures.
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Fig. 10.17: The emerging ux model for a small ares. (a) The preare phase when the emerging ux slowlyreonnets with the over-lying �eld. Slow-mode shoks (dashed urves) radiate from a small urrent sheet and heatthe plasma that passes through them (striped region). (b) The impulsive phase aused by the onset of turbuleneand anomalous resistivity in the urrent sheet when it reahes a ritial height. The eletri �eld generated bythe sudden enhanement in the reonnetion rate aelerates the partiles, whih produe hard X-rays and typeIII radio bursts. In the main phase (), quasi-steady reonnetion leads to extensive heating.


