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Abstract. A new method of “line-photometry” using the
changes of line intensities for determination of light curves
in eclipsing binaries is described. This method is based on
a generalization of the method of spectrum decomposition
by Fourier transform performed by the code KOREL for
spectrum disentangling.

Key words: line profiles — stars: binaries spectroscopic
— methods: numerical

1. Introduction

A new method for spectrum disentangling (introduced
first by Simon & Sturm 1994) which is based on the least
square fit of power spectra of line profiles was recently de-
scribed in Paper I (Hadrava 1995). This method proved to
be a useful tool also for removing the telluric lines from the
stellar spectra. Certainly, the variability of line intensities
must be included for this purpose. This can be done simply
by adding new free parameters specifying intensity multi-
pliers for each exposure to the orbital elements solved by
numerical minimization. However, this numerical solution
is very time-consuming. It is thus more advantageous to
solve for these multipliers in the way described in Sect. 2.

This generalized method has been included into a
new version of the code KOREL for spectrum decompo-
sition. Using this code to calculate the line intensities of
binary components their relative change during eclipses
was found (e.g. in the case of V436 Per, see Harmanec
et al. 1997). This effect yields, in principle, a possibility
to make photometric observations with a spectrograph.
This method of “relative line photometry” is described in
Sect. 3. In consequence, it enables also a decomposition
of contributions of binary components to the continuum,
which is otherwise indistinguishable by spectral disentan-
gling.

A detailed description of the code KOREL is ac-
cessible by anonymous ftp on server “sunstel.asu.cas.cz”
(147.231.104.100) in file pub/fotel/korel3.tex. The source
file of the code is distributed by the author on request.

2. Decomposition of spectra with variable
intensities

To generalize the method described in Paper I, let
us suppose the observed spectrum I(x, t) (the variable
x = c ln(λ/λ0) is proportional to logarithm of wavelength
expressed in an arbitrary unit λ0; cf. Simkin 1974) to be
composed of spectra Ij(x)|nj=1 of n stars which have no
intrinsic variability apart from an overall change of their
intensities proportional to functions sj(t) which may be
caused e.g., by ellipticity or eclipses of binary components
or by air-mass or humidity for the telluric spectrum.

If the instantaneous radial velocity (of the star j at the
time t) vj(t)� c, the composite spectrum is given by the
convolution in x

I(x, t) =
n∑
j=1

sj(t)Ij(x) ∗ δ(x− vj(t)) . (1)

The Fourier transform (x→ y) of this equation reads

Ĩ(y, t) =
n∑
j=1

sj(t)Ĩj(y) exp(iyvj (t)) . (2)

If we have k spectra (k > n) observed at times tl|kl=1

corresponding to various values of vj(tl), we can – in prin-
ciple – fit them by searching for appropriate values of
vj(tl), sjl ≡ sj(tl) and Ĩj(y). The velocities vj(tl) can be
treated either as independent values, or to be given func-
tions of time and certain parameters p, e.g. the orbital
elements of the spectroscopic binary. Using the standard
method of least squares we arrive at the condition

0 = δS , (3)

where

S =
k∑
l=1

∫
wl(y)

∣∣∣Ĩ(y, tl)

−
n∑
j=1

sjlĨj(y) exp(iyvj (tl; p))

∣∣∣∣2dy . (4)
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Here wl(y) is the weight of each Fourier mode y in the
exposure l. In practice, we suppose

wl(y) = wlw(y) . (5)

The weight wl of each exposure can be chosen e.g. in de-
pendence on the number of photon counts. The function
w(y) can be introduced as a frequency filter, e.g. to cut off
the low frequency modes influenced by the rectification of
the spectra.

Because S is bilinear in Ĩj(y), the conditions obtained

for them from Eq. (3) varying with respect to δĨ∗m(y) (i.e.
the variation of complex conjugate of Ĩm(y)) are linear
equations

n∑
j=1

[
k∑
l=1

wl(y)sjlsml exp(iy(vj (tl; p)− vm(tl; p)))

]

Ĩj(y) =
k∑
l=1

wl(y)sml exp(−iyvm(tl; p))Ĩ(y, tl) (6)

(m = 1, ..., n), which are moreover independent for each
y. Just this independence of Fourier components, which is
the consequence of the form of Eq. (2) local in the variable
y (unlike the form of Eq. (1) integral in the variable x),
makes the disentangling of the observed spectra easier in
Fourier transform than in the wavelength space. Solving
this system of equations for each y and substituting Ĩj(y)
into Eq. (4), S can be optimized only with respect to other
parameters, which are much less numerous.

It is obvious that Eq. (6) is singular for y = 0. This cor-
responds to the fact that the contributions of individual
stars to the constant term of I(x) cannot be directly dis-
tinguished. The continua of stars are almost constant and
in practice unaffected by the Doppler shift. Consequently,
a large error of Ĩj(y) can be expected for small values of y.
It can thus be convenient to cut-off this range of y choos-
ing here w(y) = 0. An indirect method of distinguishing
the contributions to the continuum is described in Sect. 3.

S is bilinear also in the coefficients sjl. Hence, varying
with respect to sml , we get the linear set of equations

n∑
j=1

<[∫
wl(y)Ĩj (y)Ĩ

∗
m(y) exp(iy(vj (tl; p)− vm(tl; p)))dy

]
sjl

= <

∫
wl(y)Ĩ(y, tl)Ĩ

∗
m(y) exp(−iyvm(tl; p))dy (7)

for these coefficients. Because these coefficients are gener-
ally still quite numerous (but less than the Fourier modes
of the component spectra), it is advantageous to solve for
them directly from these equations before optimizing S
with respect to either vj(tl) or p, in which it is non-linear.

It is important to keep in mind that the solutions of
orbital elements (or individual independent radial veloci-
ties), the decomposition of the spectrum and the solution

of component intensities are inter-related and their self-
consistent solution should be found. This can be achieved
iteratively starting from some initial estimate of orbital
parameters and line intensities. An inner loop solving suc-
cessively Eq. (6) for Ĩj(y) and then Eq. (7) for sjl is used
in KOREL, while the orbital parameters are solved in an
outer loop by simplex method. Practical experience shows,
that slower, but more stable convergence of some of co-
efficients sjl can be advantageous to get a better initial
estimate. A successive increasing of the number k of ex-
posures can also help the convergence.

3. Relative line photometry

The above described method for calculation of line-
intensity variations yields the possibility of finding dif-
ferential magnitude changes between the components and
also to determine the ratio of component continua in the
case that the intensity variations are caused by some over-
all darkening of a component e.g. by an eclipse. Let in the
“normal” state of a binary the intensities I1,2 of compo-
nents continua be normalized

I1 + I2 = 1 . (8)

The intensities L1,2 of lines of the components found by
solution of Eq. (6) are expressed in ratio to this common
continuum. If in another exposure the spectrum of compo-
nent “1” is z× increased (or decreased if z < 1, see Fig. 1),
then the decomposed line intensities of both components
referred to the instantaneous common continuum will be
changed by factors s1,2 to values

s1L1 =
zL1

zI1 + I2
(9)

s2L2 =
L2

zI1 + I2
. (10)

Specially, in our example shown in Fig. 1, both compo-
nents have central line intensities 50% of their individual
continua. In the maximum (left panel) the primary is twice
as bright as the secondary, hence the lines of primary and
secondary have depths of 1

3
and 1

6
of the total observed

continuum, respectively. Let in the primary eclipse (right
panel) the intensity of the primary be decreased to z = 1

4
-times its normal value. The absolute depth of the line of
primary is then 4-times lower while that of the secondary
is unchanged. However, in ratio to the total continuum,
which is now one half of its maximum value, the depth of
primary line is only twice lower, while the intensity of the
secondary line is twice higher.

Solving Eqs. (9) and (10), the factor z can be simply
expressed as

z =
s1

s2
, (11)

and the ratio of continua intensities

I1

I2
=

1− s2

s1 − 1
. (12)
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Fig. 1. Continuum and line intensities of uneclipsed components (left) and in the primary eclipse (right)

Obviously, if z < 1, then s1 < 1 and s2 > 1. This behav-
ior can help to distinguish the variations caused by the
“geometrical” reasons (or their equivalent) from intrinsic
variations of line intensities of a component or from the
observational noise.

In the usual case of k exposures, the factors zl|kl=1 of
the darkenings of the component “1” can be calculated
independently for each exposure from sjl|

2
j=1 according

to Eq. (11). The ratio of continua intensities can be then
obtained by least square fit of Eqs. (9) and (10) e.g. on
a logarithmic (i.e. magnitude) scale, i.e. by solving the
condition

0 = δF (I1) ≡ δ
∑
l

[ln s2l + ln(1 + I1(zl − 1))]
2

(13)

for the variation δI1, i.e. simply by numerical minimiza-
tion of function F (I1). The differences of magnitudes of
both components at the time of chosen exposure can be
then expressed by

m1 −m2 = −2.5 log(zI1/(1− I1)) . (14)

If the secondary component is supposed to be constant
during the primary eclipse, then the magnitude of the
whole system is given by

m = −2.5 log(1 + I1(z − 1)) . (15)

Vice versa, the total magnitude of the system in the course
of secondary eclipse can be estimated by

m = −2.5 log(I1 + (1− I1)/z) . (16)

The applicability of the method of relative line pho-
tometry in the above given approximation is certainly lim-
ited by the implicitly included assumptions that (i) the
change of intensity is the same for the line and the con-
tinuum of the eclipsed component, (ii) the intensities of
both component are constant outside their eclipses and
(iii) that the shape of line profile is constant. The first
assumption can be violated even in the case of a pure
eclipse due to the limb darkening, which is different in the
continuum and in the line. This problem will be studied
in the next section. The second assumption is crucial to
have well defined the “normal” state (in which L1,2 are

directly observed), so that the line-intensity of the non-
eclipsed component can be used as a “comparison”. This
assumption can be violated e.g. for ellipsoidal variables.
Obviously, a more sophisticated procedure (analogous to
the light-curves solution) of fitting the observed values of
s1,2 (related to a reasonably chosen “reference” state of
L1,2) by a theoretical model can yield an additional infor-
mation in such a case. Finally, the third assumption can
be violated e.g. by Rossiter effect when different equato-
rial parts of a rotating star are eclipsed. This assump-
tion is crucial for the disentangling according to Eq. (1).
However, as far as the rotational broadening (even for a
partially eclipsed component) is also given by a convo-
lution in x, it is, in principle, possible to generalize the
method of the disentangling and line photometry even to
this case. On the other hand, such effects can be negli-
gible in many cases not only for a pure eclipse, but in
some approximation also for elliptic, reflecting or pulsat-
ing components of binaries.

4. Influence of limb darkening

Let us now investigate the influence of limb darkening on
the line photometry. In the simple Milne-Eddington ap-
proximation of a plane-parallel atmosphere the observed
specific intensity for direction cosine µ is given by

I(µ, ν) =

∫ ∞
0

Sν(τν) exp

(
−
τν
µ

)
dτν
µ

. (17)

The source-function can be taken constant within the
line-profile and approximately linear in a mean (e.g.
Rosseland) optical depth τ̄ ,

Sν(τν) ' S0 + S1τ̄ . (18)

If the opacity both in the continuum (αc) and in the line
(αlφν , where φν is normalized line profile) can be taken
approximately proportional to the mean opacity (ᾱ)
through the optical depths where the line is formed, then

τν '
αc + αlφν

ᾱ
τ̄ (19)

and

I(µ, ν)
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'

∫ ∞
0

[
S0 + S1

ᾱ

αc + αlφν
τν

]
exp

(
−
τν

µ

)
dτν
µ

=

= S0 + S1
ᾱµ

αc + αlφν
. (20)

The limb-darkening is thus generally steeper in continuum
than in a line. During an eclipse, the ratio z of visible and
total (i.e. visible plus eclipsed) light is different at different
µ (i.e. z = z(µ)). Consequently, the contribution of the
eclipsed component to the total specific intensity is

Iν =

∫ 1

0

I(µ, ν)z(µ)dµ ' z0S0 + z1S1
ᾱ

αc + αlφν
, (21)

where

zk =

∫ 1

0

µkz(µ)dµ (22)

are moments of z(µ), which are algebraically independent.
Unlike the case of a homogeneous stellar disk investigated
in the previous section, where both the continuum and line
intensities were proportional to a single factor z, the con-
tribution of the eclipsed component to the total intensity
in continuum (i.e. at φν = 0)

I1(z) ' z0S0 + z1S1
ᾱ

αc
(23)

is now affected by both z0 and z1, while its contribution
to the line intensity

L1,ν(z) = I1(z)− Iν ' z1S1
ᾱ

αc

αlφν
αc + αlφν

(24)

by z1 only. The generalization of Eqs. (9), (10) for ob-
served changes of line intensities thus reads

s1 = 2z1

S0 + 1
2S1

ᾱ
αc

+ I2

z0S0 + z1S1
ᾱ
αc

+ I2
(25)

s2 =
S0 + 1

2S1
ᾱ
αc

+ I2

z0S0 + z1S1
ᾱ
αc

+ I2
. (26)

The eclipse of an edge of the stellar disk, where µ→ 0,
can have negligible effect on z1 and the line intensity,
but observable effect on z0 and the continuum intensity.
This can lead to enhancement of relative line intensity
even of the eclipsed component at this stage of eclipse.
This effect is also marginally observable in the example

Fig. 2. Preliminary results of relative line photometry of V436
Per. Magnitude differences between the primary and secondary
component (calculated according to Eq. (14) for Hα line (×)
and He I 6678 (+)) are plotted in dependence on the orbital
phase (from periastron). The secondary minimum occurs close
to phase 0.42 and the primary minimum at phase 0.98

of V436 Per shown in Fig. 2 (see Harmanec et al. 1997
for details on this system). Moreover, there seems to be a
systematically higher effect in the stronger Hα line than
in the He I line. The reason for this may lie beyond the
Milne-Eddington approximation and the assumption (18).

Unlike the case simplified in the previous section by
the assumption of homogeneous stellar disk, all free pa-
rameters (z0, z1 for each exposure and S0, S1) can not be
directly calculated now. Instead of this, radii and orbital
parameters which should match the geometry of eclipse
to the orbital phase are to be fitted to the observed data
together with appropriate models of stellar atmospheres.
In such an application the relative line photometry can
yield an additional test on model atmospheres.

Acknowledgements. The author is indebted to D. Holmgren, J.
Kubát and R.E. Wilson for useful discussions and comments.
The suggestions of an anonymous referee are also highly appre-
ciated. This study was supported by the grant 205/96/0162 of
the Grant Agency of the Czech Republic, project K1-003-601
and grant 303401 of the Grant Agency of Academy of Sciences.

References

Hadrava P., 1995, A&AS 114, 393
Harmanec P., et al., 1997, A&A (in press)
Simkin S.M., 1974, A&A 31, 129
Simon K.P., Sturm E., 1994, A&A 281, 286


