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Abstract Dynamic resonance, arising from commensurate (orbital or rotational) periods

of satellites or planets with each other, has been a strong force in the development of the solar

system. The repetition of conditions over the commensurate periods can result in amplified

long-term changes in the positions of the bodies involved. Such resonant phenomena driven

by the commensurability between the mean motion of certain artificial Earth satellites and the

Earth’s rotation originally contributed to the evaluation and assessment of the Stokes

parameters (harmonic geopotential coefficients) that specify the Earth’s gravitational field.

The technique constrains linear combinations of the harmonic coefficients that are of relevant

resonant order (lumped coefficients). The attraction of the method eventually dwindled, but

the very accurate orbits of CHAMP and GRACE have recently led to more general insights

for commensurate orbits applied to satellite geodesy involving the best resolution for all

coefficients, not just resonant ones. From the GRACE mission, we learnt how to explain and

predict temporary decreases in the resolution and accuracy of derived geopotential
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parameters, due to passages through low-order commensurabilities, which lead to low-

density ground-track patterns. For GOCE we suggest how to change a repeat orbit height

slightly, to achieve the best feasible recovery of the field parameters derived from on-board

gradiometric measurements by direct inversion from the measurements to the harmonic

geopotential coefficients, not by the way of lumped coefficients. For orbiters of Mars, we have

suggestions which orbits should be avoided. The slow rotation of Venus results in dense

ground-tracks and excellent gravitational recovery for almost all orbiters.

Keywords Satellite geodesy � Earth’s gravitational field � Geopotential � Orbits of Earth’s

artificial satellites � Resonance (commensurability) � Lumped geopotential coefficients �
Fine orbit tuning � Planetary orbiters

1 Introduction, Definitions, Motivation

1.1 Phenomenon of Resonance

Resonance is the increase in the oscillation amplitude of a system exposed to a periodic

force with a frequency equal or close to a natural (unforced) frequency of the system itself.

Such periodic commensurabilities occur widely in nature and are exploited in many

man-made devices. Sometimes it is a useful phenomenon (e.g., in musical instruments),

but sometimes it can be dangerous and its possible presence must be accounted for in

designing every building, tower, bridge, and motor car. It seems as if nature likes and often

prefers resonant situations, from nuclear magnetic resonance to commensurability in

celestial systems of galaxies, stars, planets (and their ring systems), and other bodies,

including the Earth’s artificial satellites and such curiosities as the Kirkwood gaps in the

distribution of asteroids (Ferraz-Mello 1993).

1.2 Solar System Full of Resonant Relationships

Pierre Simon Laplace presented several mémoires on planetary inequalities in 1784–1786.

He later dedicated Tome Troisième (1802) of his Traité de Mécanique Céleste (1825, re-

edited 1878) to Napoleon Bonaparte, Citoyen Premier Consul. Laplace solved a long-

standing problem in the study and prediction of the movements of Jupiter and Saturn known as

the great Jupiter–Saturn inequality. He showed that peculiarities arose in the Jupiter–Saturn

system because of the near approach to commensurability of the mean motions of Jupiter and

Saturn. Commensurability implies resonance (from repeating conditions), that is, the mean

motions are related by ratios of small integral numbers. Here, two periods of Saturn’s orbit

around the Sun almost equal five of Jupiter’s. The corresponding difference between mul-

tiples of the mean motions, (2nJ - 5nS), corresponds to a period of nearly 900 years, and in

today’s terminology, we talk of 5:2 (or 5/2) orbit–orbit resonance between Jupiter and Saturn.

Thanks to Laplace, the tables of the motions of Jupiter and Saturn (predictions or ephe-

merides) could be made much more accurate (Wilson 1985).

Since Laplace’s time (particularly during the space age), many commensurabilities in

the solar system have been discovered, for example, in the family of Jupiter’s or Saturn’s

moons and rings (by interplanetary probes), among the mean motions of celestial bodies

(orbit–orbit resonance), the mean motion and rotational speed of the same body (orbit-

rotational resonance or orbit-spin coupling), and rotation–rotation commensurability.

The phenomenon of resonance in the solar system is so frequent that we can speak of its
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‘resonant structure’. The resonances of natural bodies in the solar system are not the topic

of this review paper, but more information on them can be obtained from, for example,

Murray and Dermott (1999). Here, we focus on the orbit-rotational resonances for artificial

Earth satellites and man-made planetary orbiters.

1.3 Gravitational Field of the Earth

We first introduce the Lagrange planetary equations (LPE), of which a standard set was

given clearly by Kaula (1966), and define V, the gravitational potential of the Earth, via a

spherical-harmonic expansion. The motion of any celestial body can be described by the

system of differential equations known as equations of motion. In a general form, we can

summarize them as:

dE j=dt ¼
X

i

L j
i a; e; Ið Þ oV=oEi

� �
ð1Þ

where Ej is the jth osculating element (orbital parameter) from a standard set of six, V is the

disturbing gravitational potential of the planet (as below), Li
j (a, e, I) is a function of

a (semi-major axis), e (eccentricity), and I (inclination of the orbital plane relative to the

planet’s equator), and qV/qEi is a partial derivative of the potential (for the case of the

gravitational field in Eq. 2 specified below) with respect to the ith element. The most

important element is a, being equivalent to n (mean motion) via Kepler’s third law

(n2a3 = GMp, the overall gravitational constant for the planet of mass Mp).

The gravitational potential of the Earth and other roughly spherical bodies can be

approximated by a spherical-harmonic expansion with Legendre’s associated functions

expressing dependence of the potential on geographical latitude and longitude, with

harmonic (geopotential) coefficients (or Stokes parameters) Clm, Slm of degree l and order

m accounting for the mass distribution in the body. The relevant formula is available in any

textbook and will not be repeated here, though we remark that in all the older textbooks

this notation applies to ‘unnormalized’ coefficients, with overbars added for the standard

normalization; here we follow the modern practice of taking normalization for granted and

dispensing with overbars. In satellite orbit analysis, it is convenient to express V along the

orbit in terms of the six conventional Kepler elements (a, I, e, X, x, and M) as:

V ¼ GM

R

� �X1

l¼2

Xl

m¼0

Xl

k¼�l

X1

q¼�1
Jlm

R

a

� �lþ1

Re Fk
lm Ið ÞGk

lq eð Þ exp iwlmkq

� �n o
ð2Þ

where Jlm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

lm þ S2
lm

	 
q
, Re denotes ‘real part of’, R is the mean equatorial (reference)

radius of the central body, i ¼
ffiffiffiffiffiffiffi
�1
p

, and k and q are further integer indices, with k having

the same parity as l (Gooding and Wagner 2008, 2010), so that the two lowest values of k

are -l and (-l ? 2). Finally, Fk
lmðIÞ and Gk

lqðeÞ are mutually independent functions of I

and e, respectively (see Sect. 2.3), and w is the phase (in the LPEs), given by

wlmkq ¼ kxþ k þ qð ÞM þ m X� m� klmð Þ ð3aÞ

where m klm = tan-1 (Slm/Clm) and m is the sidereal angle. Equation (3a) is an integrated

version of the underlying formula:

_wlmkq ¼ k _xþ ðk þ qÞðnþ _rÞ þ mð _X� _vÞ ð3bÞ
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where (for both Eqs. 3a and 3b) x is the argument of perigee, M the mean anomaly, and X
the right ascension of the ascending node; the time derivative of the sidereal angle is the

rotational speed of the Earth. We have already introduced the mean motion, n, and from it

M is defined from r, the mean anomaly at epoch (t0), via M ¼ rþ
R

n dt.

For the potential V in Eq. (2), the LPEs from Eq. (1) become for the general l,
m harmonic

d

dt
E j

lm

	 

¼
X

i

L j
i a; e; Ið Þ

Xl

k¼�l

X1

q¼�1
JlmRe f ij

lm a; e; Ið Þ exp iwlmkq

� �h ih i( )
ð4Þ

where f ij
lm is a (complex) function depending on the arguments e and I in the functions

G and F, respectively, or in their derivatives (G0 and F0), as they affect the element

specified by j.
If we integrate the nonlinear Eq. (4) in a first approximation holding all orbit parameters

except M constant, the time derivative of (3a), _w (3b), appears in the denominator and it

may be that a combination of m (=0) and k ? q in Eq. (3b) is such that _w (including the

orbital and Earth rotation rates) is close to zero; the small denominator is then the hallmark

of an orbital resonance. The usual first-order analytical solution of Eq. (4), assuming

constant elements on its right-hand side, then fails as it implies infinitely large oscillations

in these elements as well as errors going to infinity. In practice, most satellite orbits are

today integrated numerically, and the small-denominator problem hardly exists. But the

linear analytical approach outlined above is very useful for quantitative estimates of small

perturbations and to gain fundamental understanding of the motion.

1.4 Orbital Resonance for the Earth’s Artificial Satellites

An orbital resonance of an artificial satellite of the Earth (or the commensurability of its mean

motion with respect to the Earth’s rotation) is identified by the ratio b:a, for an orbit having a

ground-track repeat rate of b nodal revolutions (each from an ascending node of the orbit to

the next one) over a nodal days. Here, ‘nodal day’ is a convenient term for the time the Earth

takes for one rotation relative to the satellite’s (generally moving) orbital plane. The integers a
and b are co-prime (the ratio b:a must be irreducible) and define the fundamental resonance,

but overtone and sideband resonances may also be significant. For a specific resonance, with

b and a known, the (c - 1)th overtone is specified as cb:ca, with cb = m, which defines the

relevant values of the order m, and c = 1 is almost always dominant (Gooding and King-Hele

1989). A sideband involves a fourth index, q, related to e, which changes the effect of ca, since

ca = k ? q, where k will be met again in Sects. 1.5 and 2.3.

In geometric terms, exact resonance implies a commensurability such that the satellite

returns to the same point (above the Earth) after b nodal revolutions in a (nodal) days.

In principle, the entire ground-track then repeats, but in reality the orbit experiences

atmospheric drag and other perturbations, so exact resonance is an instantaneous state; we

say, therefore, that the satellite passes through b:a resonance and the ground-track pattern

evolves. As an example, Fig. 1 shows the pattern for the ERS 1 (European Remote

Sensing) satellite when, during the selected phases of the mission, the satellite was placed

in a 43:3 repeat orbit.

The use of a satellite’s passage through orbit resonance to evaluate lumped geopotential

harmonics (Sect 1.5) was pioneered by Gooding (1971a), though Allan (1965a) had already

published a paper on the underlying theory, while Wagner (1965) and Allan (1965b) had
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published applications to the first 24-h satellite. Further papers on theory were presented by

Allan (1967a, b, 1971, 1973) and Klokočnı́k (1976), with relevant papers also by Gooding

and King-Hele (1989), Wagner and Douglas (1969, 1970), Wagner (1974), and Klokočnı́k

(1979). Details from these studies are given in Sects. 2–7. The shallow resonances [e.g.,

Reigber and Balmino (1975, 1976), Reigber and Rummel (1978)] are mentioned in Sect. 4.

1.5 Lumped Geopotential Coefficients

The term ‘lumped coefficient’ refers to a linear combination of the standard harmonic coefficients

for specific values of m and k ? q, defined by b and a, plus a sequence of degrees l (all odd or all

even) such that l C m (q is zero in the simplest cases). This follows naturally from a resonant

version of the standard LPE in Eq. (4), with indices (m, q) and k specified to make _wlmkq zero for l

covering all the permitted values. That leads to lumped harmonics defined in the form:

Cq;k
m ; Sq;k

m

	 

¼
X

l

Qq;k
lm ðClm; SlmÞ ð5Þ

where l increases in steps of 2 from l0, its minimum relevant value, k ¼ ca� q; Qq;k
lm ¼

ð�1Þ1=2ðl�loÞ Ek
lmq=Ek

lo;mq, where Ek
lmq ¼ BlF

k
lm Ið ÞGk

lq eð Þ and Bl ¼ n 1� e2ð Þ�1=2
R=að Þl. The

symbols, other than ‘E’, are taken from Gooding and King-Hele (1989).

We have to bear in mind that lumped coefficients only lead to intermediate results, for

later evaluation of individual harmonic coefficients, and the orbital data are not always

available close to an exact resonance (see the remarks on shallow resonances in Sect. 4).

Analyses of orbit inclination or eccentricity were used to compute lumped coefficients that

are valid only for the particular inclination and (to a lesser extent) the semi-major axis of

the orbit analysed. Then, having a set of orbits analysed for the same b:a resonance, but of

as diverse inclinations as possible, we can convert the lumped values (by least-squares

adjustment) into real geopotential coefficients (more in Sects. 2, 4).

Fig. 1 The ground-track patterns of ERS 1 at exact 43:3 resonance (no drag effect considered), after
completing three nodal days

Surv Geophys

123



The eventual goal of resonance analysis was to check and/or improve the global

gravitational models of the Earth, and there are three approaches to this:

(1) Compute lumped coefficients from resonant orbits and combine them, for orbits of

diverse inclinations, to get delumped (or ordinary) harmonic coefficients of the

relevant orders, which can then be compared (as a form of calibration) with the

harmonics of the global gravitational models (e.g., King-Hele et al. 1974; King-Hele

and Walker 1989).

(2) Compute the lumped coefficients from the resonant orbits, but then compute

equivalent lumped quantities from the global gravitational models and compare these

instead of the harmonic coefficients (another form of calibration); see, for example,

Kostelecký and Klokočnı́k (1979, 1983).

(3) Get lumped coefficients, but combine them with other independent data from general

satellite tracking, surface gravity, geoid heights, etc., so as to create a new global

gravitational model (much more ambitious than mere calibration).

1.6 Motivation to Study Satellite Resonance in the Sixties and Seventies

Early knowledge of the gravitational field of the Earth via satellite orbits (1958–1970) was

based mainly on optical and radar observations of low accuracy. King-Hele (1972) was

fascinated ‘with the hills and valleys of the geoid, mapped as never before…’, but in fact

only the basic features of the geoid were then recognized—the result was excellent for the

time, but rudimentary from today’s viewpoint.

Before the widespread use of laser tracking and GPS high–low satellite-to-satellite

tracking, the evaluation of resonance-based lumped harmonics was often superior to that of

harmonics based on scattered Doppler or precision camera observations from several non-

resonant orbits, the reason for this being the amplification of the perturbations over long

periods. It was a ‘golden age’ for orbit resonances of artificial Earth satellites (Sects. 2–4),

which were used to check the validity of (or even calibrate) the published accuracies of

certain parts of the global models. In some cases, they were even used directly to improve

these parts of the models.

Now, however, with continuous high-precision GPS observations of satellites like

CHAMP, GRACE, and GOCE (Sect. 5) dedicated to gravitational field research, resonance

analyses cannot compete with high-degree global models like EGM 2008, in which the

spherical harmonics are expanded to degree and order 2160 (Pavlis et al. 2008). The power

of such models comes, for low-degree harmonics, almost entirely from the GRACE low–

low intersatellite data while, for high-degree ones, it comes from the data associated with

surface-gravity anomalies, either directly observed or inferred (partly) from satellite

altimetry. Thus, as will be seen in Sects. 7–9, the role of satellite resonance today is rather

different from its original one.

2 Study of Satellite Resonance at RAE, Farnborough, England

2.1 Origins

The satellite Ariel 3 (the first one to be built entirely in the UK) was launched for the Royal

Aircraft Establishment (RAE) on 5 May 1967, with experiments for the RAE’s Space

Department. The satellite was tracked by NASA’s Minitrack Network, but the definitive
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orbit determination (based on the resulting interferometer data) was carried out at RAE.

Routine publication of the orbital parameters, at three-day intervals, drew attention to the

entirely unexpected variation of the mean inclination (to the Earth’s equator) over a

roughly three-month period from mid-December (1967). The behaviour consisted in a

marked (and steady) decrease of about 0.02� (from 80.18� to 80.16�), swamping the

lunisolar perturbations that had been expected to be the most significant ones and which

were evaluated by a computer program. The lunisolar effects, however, were compounded

of purely periodic perturbations, and the only expected secular perturbation was the one

due to atmospheric rotation, the effect of which was eventually evaluated to be

(–8.0 ± 0.6) 9 10-6 deg/day (Fig. 2).

In due course, it was realized that the unexpected decrease in inclination was due to the

15:1 resonance between the satellite’s orbital period and the 15th-order harmonics of the

geopotential. The key quantity for Ariel 3 was perceived as the resonant angle, U15, given

by

U15 ¼ xþM þ 15 X� mð Þ ð6Þ

where x, M, X, and m have already been introduced for Eq. 3a. (U15 was eventually

generalized to wlmkq, the change from U to w being to permit the inclusion of klm in the

equation.) The dominant (secular) variations in the RHS of Eq. (6) arose from M and m,

because the (fixed) rate of m is about 361 deg/day, while Ariel 3 happened to be launched to

a height at which M was initially increasing at nearly 15 times this rate, it was only a matter

of time before the ratio was, for an instant, exactly 15:1 (M’s acceleration is due to the

satellite’s gradual height loss). The ‘instant’ occurred on 3 February 1969.

The symmetric behaviour, relative to the satellite’s passage through exact resonance, of

the orbital inclination is clear from Fig. 2, taken from Gooding (1971a), where the raw

values (from the interferometry data) are plotted, as well as the theoretical least-squares fit

of four parameters to 281 equations of condition; these parameters were two lumped

harmonic coefficients, denoted by C15 and S15, together with a pair of linear parameters I0

and _I. The inclusion of two other parameters was tried, viz. the ‘first-overtone harmonic

harmonics’ C30 and S30, but the data were inadequate for the significant derivation of these

parameters in addition to the other four. The lumping for C15 consisted just of a linear

combination of C15,15 itself, C17,15, C19,15, and C21,15, and similarly for the lumping of S15,

Fig. 2 Inclination variation of Ariel 3 through 15th-order resonance, from 3-day orbit determination
followed by analysis for lumped coefficients (reproduced from Gooding 1971a)
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but delumping of C15 and S15 was impossible until additional equations (for similar linear

combinations of lumped C15 and S15) could be obtained from satellites in orbits with

significantly different inclinations (because Qlm from Eq. 5 depends strongly on the

inclination). The first simultaneous analysis (by least squares) of a number of lumped

harmonics for m = 15, with l odd and C15, was published by King-Hele et al. (1974)—it

led to nine pairs of ‘unlumped’ harmonic geopotential coefficients from odd-m up to

l = 31, after the use of 11 satellites.

2.2 Development

The obvious direction for development was to use satellites in orbits of different incli-

nations to obtain different ‘lumpings’ of actual harmonic coefficients and hence to obtain

(by the least-squares solution of elementary linear equations) individual values for these

coefficients (inseparable without the individuality of the inclinations). King-Hele (at RAE),

closely followed by Kozai (at the Smithsonian Institution Astrophysical Observatory,

SAO) and others, had already used this technique for the zonal harmonics, needing to

analyse those of even and odd degree separately.

That need carried through to the separation of the even and odd degrees for the har-

monics of order 15 (and other orders when analysed), and also (of course) for the lumped

degrees, so several RAE analyses of order-15 resonance-based lumpings were made, with

King-Hele and Walker (1989) eventually giving values for degrees up to 36 (both odd and

even). Table 6.2 of King-Hele’s book (King-Hele 1992) gives only a sample of the

complete values. An interesting 15th-order resonance graph appears in the book as

Fig. 5.6., and here as Fig. 3, interesting because it is e (not the far more usual I) that is

plotted.

2.3 Inclination Functions

The inclination F-functions, mentioned earlier, were introduced by Kaula (1966), using a

third subscript p rather than the superscript k (Gooding and Wagner 2010) used throughout

this paper. Their function is to assist in the transformation of geopotential-related

Fig. 3 Values of eccentricity for Cosmos 395 rocket at 15th-order resonance, with fitted theoretical curve
(reproduced from King-Hele 1992)
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quantities from an equator-based coordinate system to one based on the orbital plane of a

particular satellite under study. The functions were soon recognized as essential to orbit

theory, and Allan (papers from 1965 to 1973) was the RAE’s main theoretician in this area.

He followed Kaula’s basic formula (with modifications) but initiated what became a

standard recurrence relation (Gooding 1971b) as a better way for efficient computation.

But this way to compute F is not the best possible, as two of the present authors have

shown in their recent papers (Gooding and Wagner 2008, 2010).

Other work on the inclination functions came from Kostelecký (1985), Kostelecký et al.

(1986), Sneeuw (1992), and others (all outside RAE); it had become necessary to compute

the inclination functions to very high degree, and the basic formula of Kaula and Allan was

not numerically stable, with eventual underflow or overflow at some degree. In important

work, Risbo (1996) showed how F could be computed in an entirely different way, via

recurrence superimposed on convolution, and this was developed further by Gooding and

Wagner (2010).

2.4 Book by Desmond King-Hele

A section summarizing the main contributions of RAE’s Space Department would not be

complete without more general reference to the book (King-Hele 1992), cited in a par-

ticular context at the end of Sect. 2.2. This was effectively the culmination of an aston-

ishing output of research and publications in which Dr. King-Hele, F.R.S., contributed to

many aspects of satellite orbits, with resonance one of the topics he studied most.

3 Study of Resonance at GSFC NASA

In the USA, resonances were studied at many institutions, mainly in the 1960s prior to and

after the first 12- and 24-h communications satellites (in 2:1 and 1:1 resonances) were

operational (e.g., Blitzer et al. 1962; Wagner 1965; Kaula 1966, chapter 3.6; Garfinkel

1966; Gedeon et al. 1967; Murphy and Victor 1968). The first actual applications of these

resonant orbits to satellite geodesy were not through the lumped coefficients for high-order

resonances of low orbits (Sect. 2) but rather from direct observations of their mean lon-

gitude accelerations (see also Allan 1965b; Wagner 1968a, b). Each of these accelerations

in general involves more than a single order (m) and kind (C and S), for example, Kaula

ibid (Eq. 6.12).

Later, to study the much longer free drift of these and lower-altitude resonant

orbits (some subject to atmospheric drag), a semi-numerical Resonant Orbit Analysis and

Determination (ROAD) program was developed (Wagner and Douglas 1970). The

numerical part was the integration of the LPEs but the analytic part was only for selected

long-term effects in the potentials of the Earth, Sun, and Moon, including radiation

pressure and drag. The ROAD program achieved a speed of roughly 100 times a full

numerical integrator. It could cover the complete passages through multiple resonances,

the shallow ones included.

Many of the objects/orbits used in these studies were ‘discovered’ by examining the

GSFC Satellite Situation Reports (Wagner and Douglas 1969). The results (to the mid-

1970s) for resonant orbits (both circular and highly eccentric) of 1–15 revolutions/day,

including the use of the observed resonant observations in testing the accuracy of global

gravitational fields determined from independent data, are given in Wagner and Lerch

(1978). See also: Wagner (1968a, b, 1973), Wagner and Klosko (1975, 1977).
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With satellite altimetry coming on the scene, it was clear that gravitational models were

not of sufficient accuracy, but satellite altimetry data improved them enormously. The

main problem was to distinguish the geoid and permanent sea surface topography in the

altimeter observations. Wagner (1983) tested the models of that time (GEM 9, GEM L2,

and GRIM 3), from either independent satellite observations or the prior computation of

lumped coefficients from 1:1 resonances. He found that the geoid errors from the models

permitted the resulting topography to be ‘visible’ at long wavelengths, though radial orbit

errors in the altimetry remained an obstacle, resolved only by improved models. This topic

has been intensively studied during the last two decades by Klokočnı́k et al. (2008b).

4 Study of Resonance in Continental Europe

Using tracking data for stable near-resonant orbits of 12th, 13th, and 14th orders, a German–

French team applied generalized Fourier analysis to longer-period resonance pertur-

bations (typically covering several days) in mean longitude, inclination, and eccentricity

(Reigber 1973). Condition equations, for whichever order, were derived, largely for use in

assessing global GRIM models (Balmino et al. 1976; Reigber and Rummel 1978). Indi-

vidual resonance terms, for each order, were derived from these observation sets by a

generalized least-squares method known as collocation (Reigber and Balmino 1976), lar-

gely for intercomparison with RAE and GSFC results.

The theoretical background of the method was developed at TU Munich (Schneider 1973)

and applied numerically, for example, by Reigber and Balmino (1975, 1976) for the 13th and

14th orders and by Reigber and Rummel (1978) for the 12th order (using non-homogeneous

weight functions). The resonance results were then compared with those from the current

global gravitational field models of the time, an application of many of the results being to

calibrate the models. We should also recall the work of Hugentobler et al. on the 2:1 and 1:1

resonances, for example, in Hugentobler and Beutler (1993) and Hugentobler et al. (1999),

and also the activities of COGEOS (Interntl. Campaign of Optical Observations of

Geosynchronous Satellites for Geophysical Purposes), for example, Nobili (1993).

King-Hele (1992) mentions the cooperation of the United States, UK, and Czechoslo-

vakia in the days when it was not even easy to exchange letters between the ‘socialist

paradise’ and its ‘capitalist enemies’ (with no email or Internet of course). Every letter to

or from the Astronomical Institute of the Czechoslovak Academy of Sciences in Ondřejov

had to be checked by the vice-director of the Institute. Nevertheless, very friendly corre-

spondence and cooperation were possible. Czechoslovakia received NASA’s Technical

Reports and RAE Technical Reports, thus obtaining valuable information. Klokočnı́k met

King-Hele and Doreen Walker in person at Lagonissi, Greece, in 1977 (during the con-

ference ‘Artificial satellites for geodesy and geodynamics’). Gooding visited Prague and

Ondřejov for the first time in 1980, after the COSPAR General Assembly in Hungary, and

Klokočnı́k’s first US visit to the Wagners was in 1992, but Klokočnı́k and Wagner were

both already working on satellite altimetry by that time.

Czech studies started with some resonance theory (Klokočnı́k 1976), following the work

at Farnborough and Goddard, and Klokočnı́k (1988) later extended the theory. A group in

satellite dynamics at the Ondřejov observatory of the Astronomical Institute under the

leadership of Ladislav Sehnal developed the computer program PRIOR (Lála and Kost-

elecký 1980) for analytical orbit determination. It was based on camera and laser obser-

vations, following the theory and code for the US DOI (Differential Orbit Improvement)

program (Gaposchkin 1964). But there was a paucity of precise observations for several
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interesting satellites that passed through 15th-order resonance, including Intercosmos 9,

10, 11, 14, and 17, as well as the first Dutch satellite, ANS 1; Wakker et al. (1981);

so orbits were either provided by the Astrosoviet network (USSR) or taken from the

Two-Line Elements of NASA.

The most successful analysis was that of Intercosmos 11’s inclination, which suffered

the large change of 0.088 from resonance, corresponding to about 10 km cross-track

(Klokočnı́k 1979), which was published before RAE (Walker 1981). The inclination

behaviour of Intercosmos 11, around the 15:1 resonance, is shown in Fig. 4. The lumped

coefficients computed in Ondřejov were included as additional condition equations in the

German–French GRIM 3 Earth model (Klokočnı́k and Kostelecký 1981).

Some success was also achieved in the adjustment of individual 30th-order harmonics

from lumped coefficients (Kostelecký and Klokočnı́k 1983), by applying collocations, see

Moritz (1980). The collocation accounts for the statistical behaviour of a signal, amounting

to an assumed observation of zero for an unknown harmonic, with uncertainty given by

Kaula’s rule for the geopotential’s decline with degree, as estimated from the autocovar-

iance analysis of gravimetry (Kaula 1966, p. 98).

5 CHAMP and GRACE: Revived Use of Resonance

5.1 Satellites CHAMP, GRACE, and GOCE

All three satellites were designed to study the fine structure of the Earth’s geopotential

field. For information about their missions, see, among others, Reigber et al. (2003, 2005)

for CHAMP, Tapley et al. (2004) for GRACE and ESA (1999), or Floberghagen et al.

(2012) for GOCE. We also recommend www.gfz-potsdam.de.

Fig. 4 Inclination variations of Intercosmos 11 at the 15th-order resonance, 15:1, reproduced from
Klokočnı́k (1979), analysed for the 15th- and 30th-order lumped coefficients
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CHAMP (CHAllenging Minisatellite Payload for geophysical research and application,

GFZ/DLR, Germany) was launched in summer 2000 (with I = 87.3�) and was active till

September 2010.

GRACE (Gravity Recovery And Climate Experiment, NASA/DLR) was launched in spring

2002 and is still active. It consists of two near-identical satellites in (effectively the same) low

near-polar orbit, separated by a distance of about 220 km. Accurate measurements of variations

in this distance, due to the geopotential field, lead to the determination of its coefficients.

GOCE (Gravity field and steady-state Ocean Circulation Explorer, ESA) was launched in

spring 2009 and is still working in an extremely low circular nearly polar orbit. For the first

time ever, a satellite was equipped with a space gradiometer (consisting of 6 micro-accel-

erometers) able to ‘measure’ the full Marussi tensor (tensor of the second derivatives of the

disturbing geopotential). The actually achieved accuracy is 10 milliEõtvõs/Hz� (1 E = 10-9

s-2), but not the same (so high) for all components of the tensor (10 mE/Hz� for Vxx and Vyy

while 20 mE/Hz� for Vxz and the others, surprisingly including Vzz) (see Rummel et al. 2011).

Each additional measurement cycle (2-month intervals) improves the accuracy (and also the

resolution) of the geopotential coefficients derived from the measured gradients.

For all these missions, the choice of orbit is crucial. Gravitational field missions are

preferably placed in low near-circular repeat orbits to ensure consistent high sensitivity to

the gravitational signal. Very important also is the choice of inclination I, the orbit often

being selected as near-polar (for global coverage) and retrograde to be Sun-synchronous

(involving I*98�) to ensure a constant illumination of the satellite’s body by sunlight.

5.2 Diagrams for Resonance Evolution

For the exact resonance b:a and the phase wlmkq (Eq. 3a) in the LPE, we have _wlmkq ¼ 0

(Eq. 3b). The relevant satellite mean motion n can then be expressed as:

n ¼ b
a

_m� _X
	 


� _x� _r0 ð7Þ

where _X; _x; _r0 are numerically much smaller than _m and dominated, from Eq. (2), by the

Earth’s oblate coefficient. We can illustrate the situation by taking the LPEs for the

individual elements X, x, and r0, just to see the largest perturbation effect, which is due to

J2 ¼ �
ffiffiffi
5
p

C20 (J2 is not J2,0 from Eq. 2). Then, Eq. (7) gives us (Allan 1973; Wagner

1991; Klokočnı́k et al. 2003, 2008a; Bezděk et al. 2009):

n ¼ b
a

_mj j 1� 3

2
J2

R

a

� �2

4 cos2 I � s
b
a

cos I � 1

� �( )
ð8Þ

where _m [ 0, s ¼ 1 applies to direct normal rotation, and _m\0, s ¼ �1 to retrograde rotation

(applying, in particular, to the planet Venus, as may be seen from Table 1 in Sect. 8).

We note that Eq. (8) is a generalized equation for the mean motion (n) in a commen-

surate orbit, but we will not go into details such as the specific a (as a function of I)
that should be used. For discussion of that, and further consideration of this topic, see

Klokočnı́k et al. (2003).

The ‘resonance evolution diagrams’ in Figs. 5, 8, 11, 14, and 16 should now be clear. On

the x-axis, we have the integer a, and on the y-axis, we have a (or height h = a - R). Each

graph point corresponds to a resonance and is labelled either b:a or just b. The graphs are valid

only for the particular I and a range of a (or h), the results being valid for (effectively) circular
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orbits (significantly eccentric orbits of a planet with a deep atmosphere are generally not

optimum for gravitational field studies; however, see, for example, Wagner 1979).

As time passes, a is reduced by drag and the orbit passes through the resonances from

top to bottom (y-axis) as shown in Fig. 5. Note that at every moment we are inevitably

close to a resonance, but for most of the time, the nearest ones are of high order (large b
and relevant b:a) and have no practical application from the viewpoint of either gravita-

tional field study or oceanography.

Such a ‘resonance evolution diagram’ was first generated at DGFI Munich when some

of us were cooperating on the orbit choice of the ESA altimetry mission ERS 1 (Reigber

et al. 1988). It replaced the alternative graphical representation used at the time (e.g.,

Lefebvre and Vincent 1988). Our method of representation is now widely used (e.g.,

Capderou 2005).
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Fig. 5 ‘Resonance-diagram’ for ERS 1 (I = 98.54�). The first phase of its flight was kept at the 43:3
resonance (the commissioning phase and phase for oceanography), then the orbit was manoeuvred to a bit
lower to the 502:35 resonance for other oceanographic applications (kept in the given orbit with about 1 km
wide window in altitude), then again to 43:3 (the so-called ice phase) and finally was free falling for
geodetic applications (study of detailed marine geoid from altimeter measurements)

Table 1 Basic parameters of the Earth and other bodies of the solar system

Body GM (km3 s-2) J2 (10-6) R (m) _m (rev/day)

The Earth 398,600.44 1,082.627 6,378,137 1.00274

The Moon 4,902.80 203.428 1,738,140 0.03660

Mercury 22,032.24 60 2,439,700 0.01705

Venus 324,858.36 5.97 6,051,800 -0.00411

Mars 42,828.37 1,959.2 3,396,190 0.97470
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Resonance evolution diagrams show which resonances would be met during the free fall

of a satellite from its initial orbit with a given inclination and height range (from the values

of a), or which exact repeat mission of a constant height should be selected for ocean-

ography. But they can also suggest which orbits should be avoided, as in the cases of

GOCE and planetary orbiters used for gravitational potential recovery (Sects. 7, 8).

It is useful to define (and use but with care to avoid misunderstandings) the term density
of the ground-tracks at the equator, by 1/D, where D = 2pR/b, in (km), originally

according to Farless (1985), where the Earth’s circumference 2pR is 40,075 km, consistent

with R = 6 378.134 km (as implied by Sect. 1.3). The quantity D can be understood as the

longitudinal spacing (distance) of adjacent (in the same sense, or ascending or descending)

satellite tracks at the equator, after the relevant repeat period has elapsed. We will use D in

Sect. 6, but in Fig. 8b (also Sect. 6), we show the ground-track spacing as the maximum

distance between the tracks, at different latitudes, from the actual orbit (it is not this D).

5.3 Use of Resonances with CHAMP and GRACE

Analysis of CHAMP’s long-term variation in I and X in 2002–2007, during which (thanks

to orbit manoeuvres) it passed through the 31:2 resonance three times and twice through

47:3 (Fig. 6), has yielded precise values for pairs of lumped harmonics of 31st and 47th

order, and the overtones (c[ 1) of 62nd, 93rd, and 94th orders. The majority of the values

of these orders were superior in precision to projections from all comprehensive global

gravitational models prior to 2002. They show that, for the most part, the errors in the

medium- to high-order terms for the older models and the best from CHAMP-only tracking

are well calibrated. Our analyses were presented by Klokočnı́k et al. (2003), and Gooding

et al. (2004, 2007).

The essence of resonance analysis is the least-squares determination of the relevant

pairs (Cm
q,k and Sm

q,k) of the lumped harmonics and any other necessary parameters, by fitting

Fig. 6 Inclination changes of CHAMP (computed with the gravity field model Eigen-3p) during the 46:3,
77:5, 31:2, 78:5, and 47:3 resonances in some cases repeated due to the fact of the orbit manoeuvres.
Equivalents of maximum resonance orbit changes expressed in metric scales are *50 m for the 31:2 and
*150 m for the 47:3. Reproduced from Gooding et al. (2004)
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the orbital elements or state vectors over a significant period (weeks or months) around the

exact resonance; the objective of the fit is to extract maximum information from the (one or

more) passage(s) through the resonance. Either before fitting, or as part of it, the data

should be cleaned (as far as possible) of other long-period non-resonant effects on the

satellite’s orbit—in particular due to the Earth’s zonal harmonics, direct lunisolar attrac-

tion, tides (both solid and ocean), atmospheric drag, precession and nutation, and solar

radiation pressure. For high accuracy with the orbits of CHAMP and GRACE (in contrast

to earlier resonant orbits), this is not a trivial task (Gooding et al. 2007).

As an example of the lumped coefficients, from the inclination of CHAMP at the 31:2

resonance, we found for C31
0,1 (similarly S31

0,1):

C0;1
31 ¼ C32;31 þ 0:910 C34;31 þ 0:740 C36;31 þ 0:567 C38;31 þ . . .

¼ �16:70� 0:14ð Þ � 10�9

while at the 62:4 overtone, we found for C62
0,2 (similarly S62

0,2):

C0;2
62 ¼ C62;62 þ 0:608 C64;62 þ 0:456 C66;62 þ 0:363 C68;62 þ . . . ¼ 3:02� 0:03ð Þ � 10�9

In both cases, the series are for even l’s, as a consequence of ca ? q (with q = 0) being even.

This was explained by, for example, Allan (1973) and has further important consequences here.

Thus, with l–m odd for 31:2, the variation of I (for q = 0) is close to minimum, while for 62:4,

with l–m even, it is close to maximum. This accounts for the superior resolution of the 62nd-

order effect seen above. On the other hand, the situation for the main variations of X (for q = 0)

is reversed, because the nodal variations are controlled by the derivatives of the I-governing

inclination functions and not the inclination functions themselves.

Staying with the CHAMP 31:2 resonances, three pairs of order-31 harmonics (for

q = -1, 0, 1) were derived from the triple resonance passage (Fig. 6 again). The first-

overtone harmonics (with m = 62) were important for I, because (for q = 0, l–m being

even, and a near-polar orbit) they involved near-maximum effects.

Turning to 47:3, Fig. 6 shows that CHAMP passed through the fundamental I-resonance

twice and its first overtone (94:6) once. The two main resonances, one fundamental and the

other the first overtone, permitted resolution by the fact that the (l - m)-terms in both

cases are even.

Regarding the resonances of GRACE (A and B), both satellites passed slowly through

61:4 in the autumn of 2004 (Wagner et al. 2006). With even the fundamental order (as well

as the altitude) so high, however, the effect on I was seen only poorly from the mean

orbital data available, but the lunisolar effects (computed by numerical integration) were

strong enough to be visible, while the radiation-pressure effects were insignificant com-

pared with data errors.

Numerical results from CHAMP as well as GRACE may be seen in Gooding et al.

(2007). The same applies to comparisons of the resonant results with the global gravita-

tional field models published at the time.

6 Found via GRACE: Accuracy of Geopotential Models Versus Ground-Track
Density

Satellite-to-satellite tracking between GRACE A and B has been used to determine

monthly solutions (or even 10-day solutions) for the geopotential and hence its variation

with time (Tapley et al. 2004; Bettadpur and team 2006; Bruinsma et al. 2010; and others).

Surv Geophys

123



The change in individual static field solutions for each month (or another regular time

interval) yields the change in the field on the basis of the chosen interval as a step. The

monthly solutions became operational GRACE products provided by the 3 GRACE pro-

cessing centres at UTC, JPL, and GFZ (e.g., Flechtner et al. 2010). Notes on the different

releases and the different releases themselves are available online routinely at the

PO.DAAC/JPL and ISDC/GFZ data centres.

It happened that the accuracy of these results suddenly decreased in the autumn of 2004

(Fig. 7a), though the method, data accuracy, and processing remained unchanged. After

that autumn, the accuracy increased again—to the original level. This phenomenon of the

accuracy variation has been described and explained by Wagner et al. (2006), being the

consequence of GRACE’s encounter with the 61:4 commensurate orbit, leading to a

temporary but significant decrease in ground-track density.

Due to orbital decay from the atmosphere, a similar situation was likely to occur for

GRACE in other encounters with resonance commensurabilities; see the evolution and 3D

diagrams (based on real orbital elements) in Figs. 8a and b. Indeed, in 2010 GRACE

passed through the 107:7 resonance and a temporary decrease in effective geopotential

field resolution was registered again, similar to 61:4 in 2004 (Fig. 7b, Bettadpur 2010, priv.

commun.), but this being a weaker resonance, its effect was smaller.

The core of the phenomenon of accuracy decrease can be described as follows. At a

low-order resonance (when b is small, say 15, 31, or 47), the value D is much larger (by

orders of magnitude) than in the more ‘general’ case (with, e.g., a high-order commen-

surability of b * 200): compare, for example, Fig. 9a with b and (later) Fig. 15a with b.

Then, we can have the same number and quality of satellite observations for gravitational

field determination, though the density of the ground-tracks at the equator and with respect

to both latitude and longitude is much less (it means the value D is much higher) for

Fig. 9b than for Fig. 9a.

Note, however, that the phenomenon is only temporary (Fig. 7a); due to the atmo-

spheric drag, the semi-major axis of the satellite steadily decreases, so D changes signif-

icantly with time in a free falling orbit of low to moderately low altitude. After a while, the

accuracy returns to its pre-resonance level (e.g., Fig. 7a, year 2005), because D goes back

to its earlier level, but a new (low-order) resonance may appear later and the phenomenon

of accuracy decrease will again be annoying (e.g., 107:7, Fig. 7b, and 46:3 or 31:2 in the

future, Fig. 8a).

To avoid reduction in the accuracy of the gravitational field parameters, we may want to

choose a commensurate orbit where b is higher than the maximum degree lmax of the

harmonic expansion wanted for the particular body’s resolution. This choice will introduce

some correlations between orders but has an advantage of smaller truncation for the larger

permitted field. The more conservative limit lmax \ b/2, proposed by Colombo (1983) and

proven as m-correlation free by Wagner et al. (2005, 2006), is still being discussed, for

example, by Weigelt et al. (2009), and more (in preparation).

For GRACE and its 61:4 resonance, the conservative limit lmax is severe, restricting the

retrievable degree to a mere 30! Even if the rule would not be lmax \b/2 but lmax \b
(Weigelt et al. 2009), we know that for the Earth we achieved lmax * 2,000 in the recent

combined gravity models and lmax * 200 in satellite-only models. Thus, the low-order

resonances such as 61:4 (and similar ones which GRACE already has met or will meet

during its decay in the atmosphere, such as 107:7) will remain a problem. The authors of

gravitational field determinations from GRACE may want to resolve them to much higher

degree and order for the high resolution now needed in geo-applications. But there is no
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way to remove low-order resonances from the orbit of a freely falling satellite, and we have

to allow for temporary drops in accuracy.

Detailed analyses about the relationship of the low-order resonances, ground-track

density changes, and the accuracy of the gravitational field parameters derived from such

orbits have been published in Klokočnı́k et al. (2008b) and Weigelt et al. (2009).

Fig. 7 a Accuracy of the monthly solutions for the geopotential variations from GRACE A/B data, courtesy
of S. Bettadpur (2004, 2006, priv. commun.), from May 2004 to March 2005. Note the remarkable accuracy
decrease between August and October 2004. On the x-axis, there is degree of harmonic expansion of the
gravity field variations. Note the logarithmic scale on the y-axis with the error of geoid height in millimetres.
The accuracy decrease has been explained by temporary presence of the 61:4 orbit resonance (Wagner et al.
2005, 2006). Here was the inspiration for further studies of relationship between the resonance, ground-track
density, and accuracy of gravitational parameters. b Accuracy of the monthly solutions for the geopotential
variations from GRACE A/B data, courtesy of S. Bettadpur (2010, priv. commun.), around the 107:7
resonance, from May 2009 to May 2010
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Fig. 8 a Evolution of resonances for free fall of GRACE A/B satellites since their launch (2002). Till 2011,
the satellites passed through the 61:4 and 107:7 resonances; the 46:3 and 31:2 will be the next lowest-order
(most dangerous) resonances. b Evolution of the ground-track spacing for GRACE, shown here as the
maximum distance between tracks (in kilometres). There are remarkable differences in this spacing over
time, its inverse being the track density, with the maximum spacing (minimum density) at the resonances.
Note the lower order of the resonance, the larger distances between tracks (or the lower track density). Note
also that the minimum density is not always at the equator but depends on both the resonance order and the
orbit inclination while the range of density with latitude is usually large

b

Fig. 9 Ground-tracks of GRACE A a few months before the 61:4 resonance (situation in January 2004, top
figure a) and at the exact 61:4 orbit resonance (September 2004, bottom figure b). The density D is about
100 km in case a and 660 km in case b. This density difference correlates with the accuracy changes of the
monthly solutions derived from data from GRACE A/B, as is shown in Fig. 7a
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7 Application of the GRACE Finding to Orbit Tuning of GOCE

The situation for GOCE is totally different from that for CHAMP (with its few gross orbit

altitude changes) and GRACE (with only small manoeuvres to keep the sub-satellites at a

constant separation), as both fall freely through the atmosphere. GOCE is kept at a selected

height—with as high precision as possible (now better than ±10 m)—by means of an ion

motor during the pre-defined observing campaign of the on-board gradiometer. From

GRACE we learnt how to choose the appropriate orbit for GOCE by making small changes

to its semi-major axis, the changes being known as fine orbit tuning. This should avoid any

decrease in the accuracy of the geopotential field findings from the gradiometer mea-

surements. Thus, no accuracy decrease should arise here as is possible in a free falling

orbit.

GOCE was launched into a near-circular, nearly Sun-synchronous orbit at the initial

height of 285 km. During its first, free-decay phase in orbit, the satellite passed through the

16:1 resonance at 268.4 km (as shown in Fig. 10). The effect of this resonance, together

with the uncertainty in the solar activity prediction, had a distinct impact on the evolution

of the orbital elements. Then, the so-called measurement operational phases (MOP)

with the gradiometer started. To maintain a near-constant and extremely low altitude for

the MOP, the satellite uses an ion-thruster to compensate for atmospheric drag

(http://www.esa.int/SPECIALS/GOCE/). To make the ground-track grid dense enough for

a proper sampling of the gravitational field, ESA defined, before the launch of GOCE, the

constraint for a minimum ground-track repeat period to be 2 months (e.g., Floberghagen

et al. 2012).

Bezděk et al. (2009) studied suitable repeat cycles near the 16:1 resonance (point A in

Fig. 11). The cycles were found to differ greatly in stability in regard to small perturbations

of the satellite’s mean altitude and in the evolution of the ground-track coverage. In

Fig. 11, points B and C designate two candidate orbital configurations providing dense

enough sampling at the end of the 61-day repeat period. The two configurations differ,

however, in that the lower one (C) has a 30-day sub-cycle (the point in Fig. 11 labelled

Fig. 10 Passages of CHAMP, GRACE, and GOCE satellites through important low-order orbital
resonances
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481:30), while the higher one (B) has not. Although the grid of ground-tracks of orbits B

and C is of almost the same density, they differ in the way the two ground-track grids are

laid down on the Earth’ surface. The ground-track grid of orbit B, with no sub-cycles,

evolves slowly during the whole repeat period, and a homogeneous global coverage is

obtained only after the full 61-day repeat period has elapsed (Fig. 12, panels in the left

column). It is different for orbit C, with a second sub-cycle; after the first sub-cycle period

of 30 days is over (Fig. 12, panels in the right column), the Earth’s surface is already

covered by a ‘half-dense’ global grid of ground-tracks. In this respect, the advantage of

repeat orbits with sub-cycles is that, after the sub-cycle repeat period is over, a near regular

global coverage of the Earth’s surface is achieved, which is, however, less dense. On the

other hand, if the altitude of a repeat orbit with sub-cycles is varied by a rather small value

(say tens or hundreds of metres), the regularity and/or density of the final ground-track grid

might be damaged as there are repeat configurations with differing repeat periods very

close in altitude to the chosen one. This is illustrated by the series of the highlighted orbital

configurations in Fig. 11, near the altitude of 259.4 km, whose mean altitudes differ by less

than 180 m and whose repeat periods have such various values as 20 and 145 days.

At the time of the GOCE launch in March 2009, ESA officially announced the altitude

intended for the first measurement phase to be near the repeat orbit (B) with no sub-cycles,

on the upper ‘branch’ of the repeat orbits below the 16:1 resonance (Fig. 11). But due to

the extremely low solar activity in 2009, ESA decided that the actual measurement altitude

would be a lower 61-day repeat orbit with 20- and 40-day sub-cycles (orbit labelled D in

Fig. 11 Evolution of resonances for hypothetical free fall of GOCE. This diagram is used to select a
specific high-order resonant orbit. An ion motor on board of GOCE can keep altitude with (at least) 10-m
precision
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Fig. 11). We analysed the nearby repeat configurations (Bezděk et al. 2010) using a ‘full-

scale’ orbital integrator, and we found that, by a small shift in the mean altitude of 200 m,

a 62-day repeat orbit with a somewhat more regular ground-track coverage might be

obtained; this is the 995:62 orbit labelled E in Fig. 11.

In Fig. 13 we do not show the ground-tracks over the whole globe, but just in a narrow

zone along the equator. In the upper panels, we show a portion of the equator with the

ascending ground-tracks; the panels differ in the mean satellite altitude. The ground-track

grid of the 61-day repeat orbit (in blue) is regular, corresponding to the close double-peak

located at the centre of histograms in the lower panel, with the equatorial gaps spread in the

interval between 35 and 45 km. Indeed, in the upper panel of the 61-day orbit, a small

irregularity in the longitudinal spacing between the adjacent tracks can be seen. In Fig. 13

we also highlighted the 41-day sub-cycle with the 60 km long equatorial node separations

(in red), too long for the required spatial resolution of GOCE. The mean altitude of the

41-day repeat is 100 m above that of the 61-day orbit (see the legend in the lower panel,

Fig. 11). Due to the inclusion of all orbital perturbations, the histogram peaks become

wider and more complicated; the points corresponding to repeat orbits in Fig. 11 are

somewhat blurred and the regular repeat ground-track grids display small irregularities.

Here, the concept of fine orbit tuning may be applied. Based only on the simple ‘J2 theory’,

the ground-track grids of the 61- and 62-day repeat orbits should be practically the same.

But with other perturbations included, the ground-track grid of the 62-day orbit (Fig. 13, in

green) is more regular, its histogram peak being clearly centred at 40 km. Thus, by making

Fig. 12 Temporal evolution of a repeat orbit without a sub-cycle (on the left), and with a sub-cycle (on the
right). Only a small portion of the orbits near the equator is shown
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the satellite altitude only 200 m higher, one can obtain the most homogeneous coverage of

the Earth surface for the two-month measurement period in the considered altitude range.

We see that not only the orbit choice to avoid the 16:1 resonance, but also the proper fine

orbit tuning in its vicinity, can significantly affect the quality of scientific data derived from

the gradiometer.

8 Planetary Orbiters

The work with GRACE and GOCE can now be applied to planetary orbiters, the tracking

of which can be used to improve the gravitational field parameters of the planet. It should

be noted that we focus only on the resonance phenomenon and its relationship to the

quality of the field parameters; our theoretical study of planetary resonance, therefore,

entails no orbit determination.

The question is how the resonance-diagrams will appear for various planetary orbiters;

we assume low, circular orbits, and orbiters primarily launched to study the planet’s

gravitational field. First, we have to use the appropriate values of GM, J2, R, and _m; these

are supplied in Table 1, where the values conform to the international standards defined in

Seidelmann et al. (2007).

Fig. 13 Histograms of
ascending node separation for
orbits near the 61-day repeat orbit
used in the first measurement
operational phase of GOCE
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Note that the gravitational fields of Mars, the Moon, and Venus are known to degrees

lmax of about 95, 100, and 180, respectively (Lemoine et al. 1997, 2001; Marty et al. 2009;

Konopliv et al. 1999).

The resonance-diagram for close Mars orbiters (Fig. 14) shows a situation similar to the

Earth; we might place a satellite in an orbit in the vicinity of a low-order resonance, such as

13:1, 14:1, or 25:2, but this would lose accuracy in the geopotential analysis. It holds for

Mars as for the Earth that lmax � b. Thus, an orbiter at a resonance with b * 12–14 is not

appropriate; we should seek an orbit at a high-order resonance. The ground-tracks for the

13:1 resonance of a Mars orbiter are shown in Fig. 15a, to be compared, for example, with

those for the 188:15 in Fig. 15b. The actual Mars missions MGS (Mars Global Surveyor,

1998–2006) and ODY (Mars Odyssey, 2002–2008) had orbits with height variations (from

the orbit manoeuvres) that led to passing through various higher-order resonances, for

example, 188:15, and the choice of heights was satisfactory (but not ideal) from the

viewpoint of gravitational field determination.

For future Mars orbiters (in nearly circular orbits), the avoidance of low-order reso-

nances is recommended. Small changes (of a few kilometres) in semi-major axes, whether

up or down, could lead to a substantial improvement of parameter accuracy, with negli-

gible extra cost.

The resonant phenomena for the slowly rotating bodies (Table 1) and their orbiters in

nearly circular orbits are different from what we are accustomed to for the Earth or Mars.

We give here an example, in Figs. 16 a and b, for Venus. For more results (the Moon,

Mercury, Mars, and Venus), see Klokočnı́k et al. (2010). The resonance-diagram for slowly

rotating planets degenerates to ‘stripes’ (Fig. 16a). Then, expanding the scale of Fig. 16a, b

shows short intervals in semimajor axes that are similar to the graphs we saw for the Earth

or Mars. The lowest resonant orders for very low orbits are about (b=) 350, 970, and 3,850

for the Moon, Mercury, and Venus, respectively. Thus, we show that the determination of
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Fig. 14 The resonance-diagram for a Mars orbiter with orbit heights between 50 and 400 km and nominal
inclination 92.7�
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the gravity fields of these bodies do not lead to the same problem as for the Earth or Mars.

For these three bodies, we still have lmax � b. See the example for Venus in Fig. 16b,

b = 3,851 or 3,852, which is much more than the highest lmax known till now for the

gravity field of Venus (see above), namely 180 (Konopliv et al. 1999).

To summarize Sects. 6–8, a relationship between the ground-track density (dictated by

proximity to orbit resonances) and the accuracy of geopotential recovery has been found

Figs. 15 a, b Ground-tracks for a Mars orbiter at the 13:1 and 188:15 resonances to compare the track
distances and to estimate a possible loss of accuracy due to a hypothetically bad choice of the orbit (too
close to the 13:1 or similar low-order resonance); the value D at 13:1 is about 1,640 km, while D at 188:15 is
*110 km
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from studying the orbit behaviour of GRACE—the lower the density, the poorer the
accuracy. The discovery was extended to GOCE, and an extension to other celestial bodies

of the solar system was then a logical step. For Mars we found a situation similar to the

Earth, and we suggest fine orbit tuning for future close Mars orbiters to achieve maximum

gain for the accuracy of gravitational field parameters.
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Fig.16 Resonance-diagram (a) and its zoom (b) for very low and nearly polar orbits of a Venus orbiter
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9 Summary

Commensurabilites, or repetitions in the motions of two mutually interacting bodies, result

in the physical phenomenon of ‘resonance’ or amplification of those motions. They are

pervasive in nature from astronomy (planetary orbits and ring systems) to engineering (the

breakdown of structures under oscillating loads). For physical resonances, we reviewed

how the commensurability of the Earth’s rotation with the orbital motion of its artificial

satellites gave rise to amplified orbit changes facilitating accurate and independent

delineation of specific orders of spherical harmonics of the ‘lumpy’ Earth’s gravitational

field. These in turn have been used to validate or improve more general models for the

parts of those models resonant on these specific orbits. With the advent of repeating Earth

satellite orbits conveniently used from the beginning of the space age for communications

and all survey purposes, we have recently found that the ones designed to recover the

Earth’s gravity field from orbit observations can have serious accuracy losses depending on

the order of the commensurability (the number of orbit revolutions in a repeat cycle). This

order is directly related to the density of ground-tracks in the cycle. High orders (high

density) result in accurate recoveries, and low orders (low density) in reduced accuracies.

We discussed in detail this last application of commensurate orbits to a few recent and

projected gravitational recovery missions for the Earth and other planets. The aim of the

planning discussed for these missions (their repeat orbits) was to optimize the recoveries

for whatever harmonic field is sought for these planets.
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