Gravitational signal and spectra of the crustal and the mant]e ayers

Global Earth’s density distribution models based on data from seismic tomography and crustal compilations still
= improve in the accuracy, and both in the lateral and vertical resolutions. We first evaluate the gravitational signal
< generated by such a model, LITHO1.0 (Pasyanos, 2014), and focus on its gravitational spectral properties. Because

LITHO1.0 provides only about 10% of the total Earth’s gravitational acceleration, we try to add a signal coming from
<4 the remaining part of the mantle (down to the CMB) with the help from the LLNL-G3D-JPS model (Simmons, 2016).
2 Using the later we experiment with converting P and S velocities into the density information required in volume
"Q integrations. Then we examine how these models fit together and how their summed gravitational signal approaches the
< observed anomaly fields. The triangular parameterization used in both models is introduced in order to set up a global

triangular surface-to-CMB density distribution model. This seems to be a useful starting point for testing various

thermochemical scenarios in particular depths while constraining the outcome with modern satellite

Intro & Motivation
* Global seismic velocity and density density models

reach comparable spatial resolution as Earth's
gravimetry models (based on GOCE satellite, ESA)

* Forward modelling with velocity-based densities vs.
the observed gravity (intensity, gradients) can contrain
other effects on a global scale (e.g., mantle convection)
* The deeper areas are considered => calculated
gravity anomalies decrease to reach observed gravity
anomalies, and, the "maneuvering" space for other
effects is thus more limited.

Data
1. LITHO1.0 (0-435 km depth) - velocities and density,

28 inhomogenous layers
2. LLNL-G3D-JPS (0 - CMB depth) - Vp, Vs and more
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Differences between triangles in terms of the area

. Forward calculation - inner/outer/global (LITHO1.0)

1,3 2 1 3
J. Sebera, R. Haagmans, J. Ebbing, A. Bezdek
sebera@asu.cas.cz

[3]

IS,
f-esa

European Space Agency
The Netherlands

Kiel University
German

Astronomical Institute, CAS
Czech Republic

/52
1.058

/s> ;
- |

__________

gravity

0 1.05
1 400 0.5 440 1.058 327
0.75 100 0.25 —q, 1220 1.054 1320
——99,
0.5 200 0 0 1.05 313
_ 7210 0 10 20 30 10 0 10 20 30 10 0 10 20 30
75" N : —\ E : E , —
- D E 440 F 327
220 ! 1320 ravit
o0 N 0o [P . 313 8 y
gradient
45° N
88DD
downward
component

15E 30 E

0 15E 30°E 0

\ I
\ ’
\ ’
\ ’
\ /
/

geocentre

inner zone

integration global integration

integration

=> gradient(s) less affected by outer zones
. Global gravitational spectra (LITHO1.0) /1010001y

-
-

10t

-
-
-
-
-

LITHO1.0 modified
_______ " in the mantle lid

= Jpper mantle
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All unfilt.

Al filt, <l

All with LID(0.316-Vp+0.769) filt.
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SIURIIJINY

: Joining LITHO1.0 and LLNL-GD3-JPS

* LLNL-GD3-JPS has spheroidal geometry, while
LITHO01.0 spherical => linking both not trivial

* Vp, Vs of LLNL-GD3-JPS need yet to be converted to
mass densities => error and trial

LLNL-GD3-JPS

Summary

: * Although 435 km deep only, LITHO1.0 approaches

: real field and provides spectral relations between major
: players (Asthenosphere, Lid, Crust)

: * LITHO1.0 cannot give long wavelengths of the gravity

: field since they depend on much deeper areas too

: * LLNL-GD3-JPS has the same lat-lon parameterization as
: LITHO1.0 but a different geometry => can be adjusted

: * The open problem is to reliably convert Vp and Vs in

: the whole mantle into the density => will be done in an

iterative way considering thermochemical constraints



