Calibration of Swarm accelerometers by means of kinematic orbits and gravity field models

Aleš Bezděk¹ Jaroslav Klokočník¹ Jan Kostelecký² Josef Sebera^{1,2}

¹Astronomical Institute, Academy of Sciences of the Czech Republic ²Czech Technical University in Prague

First Swarm Validation Workshop, ESA/ESRIN Frascati, 20 June 2012

Calibration of Swarm accelerometers by means of kinematic orbits and gravity field models

- Background and objectives
- Calibration method
- Results using real data
- Contribution to SWARM validation activities

Forces acting on LEO satellites

- Satellites in Low Earth Orbits (LEO): altitudes 100-2000 km
- Dominant is the central gravitational field
- Other forces act as small perturbations

Accelerations of gravitational origin

- central geopotential term
- noncentral geopotential terms
- Iunisolar perturbations
- solid-Earth and ocean tides
- relativistic effects

Nongravitational accelerations

- atmospheric drag
- radiation pressures (direct solar, albedo, terrestrial infrared)

Magnitudes

 $\mu/r \gg J2 \gg GRAV$ rest, DRAG, LUNISOL > SETID > OTID, DSRP > ALB, IR, RELAT

Space accelerometers

- Designed to measure tiny nongravitational accelerations
- Aboard the satellites: CHAMP, GRACE, GOCE
- Magnitude of nongravitational accelerations:
 - >Along-track: $10^{-7} 10^{-5} \text{ m.s}^2$ >Cross-track: $10^{-9} - 10^{-6} \text{ m.s}^2$
 - Radial: $10^{-9} 10^{-7} \text{ m.s}^2$
- Due to the smallness of the nongravitational signal compared to gravity, space accelerometers cannot be calibrated on the ground.

Uncalibrated ACC data

- Waveforms of uncalibrated ACC signal and simulated NG accelerations are quite similar.
- Spikes in cross-track and radial components correspond to cold-gas thruster firings.
- RAD component
 - ➢ Orbit geometry → passage through zero
 ➢ ACC data have offset
- Comparison of range on y-axes
 ACC data are orders of magnitude out
- Need to calibrate the ACC readouts

Acceleration approach

GPS positions r with constant time step → numerical second derivative of r(t)
 → GPS-based accelerations d²r/dt² ≈ a^(GPS)

Newton's second law: $\mathbf{a}^{(\text{GPS})} \approx d^2 \mathbf{r}/dt^2 = \mathbf{a}_{\text{geop}} + \mathbf{a}_{\text{LS}} + \mathbf{a}_{\text{TID}} + \mathbf{a}_{\text{REL}} + \mathbf{a}_{\text{NG}}$

 $\mathbf{a}_{geop}(\mathbf{r}) \equiv \sum GC \times \nabla SSH(r,\theta,\phi) \dots$ geopotential in spherical harmonics \mathbf{a}_{LS} , \mathbf{a}_{TID} , \mathbf{a}_{REL} , \mathbf{a}_{NG} ... lunisolar action, tides, relativity, nongravitational forces

Two applications:

1) Assume the geopotential is known and define GPS-based NG accelerations

$$\mathbf{a}_{NG}^{(GPS)} = \mathbf{a}^{(GPS)} - (\mathbf{a}_{geop} + \mathbf{a}_{LS} + \mathbf{a}_{TID} + \mathbf{a}_{REL})$$
$$\mathbf{a}_{NG}^{(GPS)} = \mathbf{B} + \mathbf{S} \cdot \mathbf{a}_{ACC}^{(UNCAL)} + \boldsymbol{\varepsilon}$$
(*)

Calibration parameters B/S for ACC are obtained by solving linear system (*).

2) On rearranging the observation equations:

 $\sum \mathbf{GC} \times \nabla SSH(r,\theta,\phi) + \boldsymbol{\epsilon} = \mathbf{a}^{(GPS)} - (\mathbf{a}_{LS} + \mathbf{a}_{TID} + \mathbf{a}_{REL} + \mathbf{a}_{NG})$ Now **Geopotential coefficients GC** can be solved for.

ACC calibration by acceleration approach: ASU¹ version

Linear system of observation equations to estimate calibration parameters B/S: $a_{NG}^{(GPS)} = B + S.a_{ACC}^{(UNCAL)} + \varepsilon$

- Calibration standard: GPS-based NG accelerations, a_{NG}^(GPS) = a^(GPS) a_{GRAV}
- Assumption: uncertainty in modelled accelerations of gravitational origin

 $\mathbf{a}_{\text{GRAV}} = \mathbf{a}_{\text{geop}} + \mathbf{a}_{\text{LS}} + \mathbf{a}_{\text{TID}} + \mathbf{a}_{\text{REL}}$ is negligible relative to that of $\mathbf{a}^{(\text{GPS})}$

Problem: Numerical derivative amplifies noise in GPS positions

Solution: Generalized least squares (GLS)

 \rightarrow linear transformation of system (*)

■ Problem: Real data → GPS positions have correlated errors

Solution: partial autocorrelation function (PACF) \rightarrow autoregressive model (AR) \rightarrow linear transformation of system (*)

Solving transformed system (*) we get calibration parameters B/S by ordinary least squares.

(*)

Problem of amplified noise

- Accelerations: d²r/dt² ≈ a^(GPS) ≡ F * r
- The second derivative filter F amplifies the noise in the GPS positions, especially high-frequency noise
- Figs: example for nongravitational forces, the "true" signal a^(SIM)_{NG} is buried in noise
- Moreover, through the action of filter F, the noise become also autocorrelated
- Smoothing is a possible way out, but:
 > further autocorrelation of residuals
 > signal is heavily smoothed too

Problem of autocorrelated noise

Linear system of observation equations to estimate calibration parameters B/S: $\mathbf{a}_{NG}^{(GPS)} = \mathbf{B} + \mathbf{S} \cdot \mathbf{a}_{ACC}^{(UNCAL)} + \boldsymbol{\epsilon}$

 Ordinary least squares (OLS) provide correct uncertainty estimates for the fitted parameters (usual "3-σ rule"), if the errors ε are independent and normally distributed

- If the random errors are positively correlated
 > uncertainty in the fitted parameters is underestimated
 > overly optimistic accuracy estimates
- In Eq. (*) filter F generates a correlation structure of random noise in a_{NG}^(GPS)

(*)

Generalized least squares (GLS)

- <u>Autocorrelated</u> errors in OLS problem \rightarrow <u>non-diagonal</u> covariance matrix $C \neq \sigma^2 I$
- GLS defines linear transformation: W=T⁻¹, where C=TT' (T … "square root" of C)
 → new covariance matrix is diagonal
- In transformed variables, OLS may now used
 - > correct estimates of mean values and uncertainties of the parameters
 - ➤ correct estimates of <u>confidence intervals</u>
- In statistics, GLS estimator is also called the Aitken estimator
- Sometimes the GLS method is already "contained" in Gauss-Markov theorem when using weight matrix P=C⁻¹

Use of GLS to remove autocorrelation and HF noise

Linear system of observation equations to estimate calibration parameters B/S: $\mathbf{a}_{NG}^{(GPS)} = \mathbf{B} + \mathbf{S} \cdot \mathbf{a}_{ACC}^{(UNCAL)} + \mathbf{\epsilon}$

 In fact, non-diagonal covariance matrix was generated by the second derivative filter F: C=σ²FF', where σ² is the variance of the white noise in GPS positions

 \rightarrow finding the GLS transformation matrix is straightforward: W=F⁻¹

- W=F⁻¹ is inverse to second derivative filter → application of W is "double integral"
- Effectively, we got back into the positions, but now with known part of signal removed
- After applying the GLS transformation W to eq. (*):
 - > the residuals become again uncorrelated
 - > the variance σ^2 of **noise in GPS positions** may be **estimated**
 - high-frequency noise amplification is eliminated

(*)

Decorrelation of GPS position errors using AR process

Problem: Real GPS positions have correlated errors

Indicated by sample autocorrelation function ACF

Partial autocorrelation function PACF

Rapid decay of PACF \rightarrow suitability of AR model to represent the correlation structure

 In figure, fitted autoregressive model AR of order 4 approximates ACF of residuals

Decorrelation of residuals using fitted AR models

- by linear transformation of calibration system (*)
- ACF and PACF become approx. delta functions

Calibration parameters B/S have realistic error bars

Correct estimates of ACC data uncertainty!

Estimation of geopotential coefficients GC

- After decorrelation, GC are more accurate by factor 2–3!
- More realistic uncertainty estimate of GC

Real data: calibration of GRACE accelerometers

- Period of two satellite revolutions
- Amplification of noise due to second derivative
- Residuals after first linear transformations
- Errors in GPS positions of few cm
- Obvious autocorrelation (sample ACF)
- PACF falls down quickly

 → we estimated AR process of order 7
- Residuals after second linear transformation derived from fitted AR(7) process
- Both ACF and PACF now indicate that residuals become uncorrelated

Calibration of 1.5 years of GRACE accelerometers data

- Due to a large bias B, the calibration parameters B and S are highly correlated
- We set S fixed after GRACE TN-04-02
 → bias offsets have similar time evolution

Further information

- http://www.asu.cas.cz/~bezdek/vyzkum/
- Bezděk A, 2010. Calibration of accelerometers aboard GRACE satellites by comparison with POD-based nongravitational accelerations. *Journal of Geodynamics* 50, 410–423.

Gravity field models from orbits of CHAMP, GRACE, GOCE

- Examples of successful application of the presented calibration method to estimate geopotential coefficients.
- One-day solutions
- CHAMP yearly solution for 2003
- GOCE two-month solution
- Average hydrological signal in CHAMP and GRACE solutions over 7 years (time-variable gravity)

Contribution to SWARM validation activities

Pertinent Level-2 products

- ACCxCAL_2_: Accelerometer calibration parameters for all three SWARM satellites
- ACCx_AE_2_: Time series of calibrated accelerometer data
- Level 2 precise kinematic orbits

The presented ACC calibration method

- Independent assessment of ACC calibration parameters
- Output: <u>calibrated ACC measurements</u> together with <u>realistic uncertainty estimates</u>
- Implemented solely by our team, independent of any other orbital sw package
- Was tested using real-world ACC data of CHAMP and GRACE with positive results
- No special manoeuvres are necessary, method is <u>applicable during science free-fall regime</u>
- During <u>routine</u> phase: it may operate <u>offline</u> (CAT-1 algorithm)

Apart from calibrating ACC data, we will compute **SWARM-only gravity field models**

Thank you for your attention