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Calibration of Swarm accelerometers 
by means of kinematic orbits 

and gravity field models

 Background and objectives
 Calibration method
 Results using real data
 Contribution to SWARM validation activities
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Forces acting on LEO satellites
 Satellites in Low Earth Orbits (LEO): 

altitudes 100-2000 km
 Dominant is the central gravitational field
 Other forces act as small perturbations

Accelerations of gravitational origin
 central geopotential term
 noncentral geopotential terms
 lunisolar perturbations
 solid-Earth and ocean tides
 relativistic effects

Nongravitational accelerations
 atmospheric drag
 radiation pressures 

(direct solar, albedo, terrestrial infrared)

 Magnitudes
μ/r à J2 à GRAV rest, DRAG, LUNISOL > SETID > OTID,DSRP > ALB, IR, RELAT
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Space accelerometers
 Designed to measure tiny nongravitational accelerations
 Aboard the satellites: CHAMP, GRACE, GOCE

 Magnitude of nongravitational accelerations: 
Along-track: 10-7 – 10-5 m.s2

Cross-track: 10-9 – 10-6 m.s2

Radial: 10-9 – 10-7 m.s2

 Due to the smallness of the nongravitational signal 
compared to gravity, space accelerometers cannot be 
calibrated on the ground.
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Uncalibrated ACC data
 Waveforms of uncalibrated ACC signal and 

simulated NG accelerations are quite similar.

 Spikes in cross-track and radial  components 
correspond to cold-gas thruster firings.

 RAD component
Orbit geometry → passage through zero
ACC data have offset

 Comparison of range on y-axes
ACC data are orders of magnitude out

 Need to calibrate the ACC readouts
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Acceleration approach
 GPS positions r with constant time step → numerical second derivative of r(t) 
→ GPS-based accelerations d2r/dt2 ≈ a(GPS)

Newton’s second law:      a(GPS) ≈ d2r/dt2 = ageop + aLS + aTID + aREL + aNG

ageop(r) ≡  GC× “SSH(r,θ,φ) … geopotential in spherical harmonics
aLS , aTID , aREL , aNG … lunisolar action, tides, relativity, nongravitational forces

Two applications:
1) Assume the geopotential is known and define GPS-based NG accelerations

aNG
(GPS) = a(GPS) – (ageop + aLS + aTID + aREL)

aNG
(GPS) = B + S.aACC

(UNCAL) + ε ()
Calibration parameters B/S for ACC are obtained by solving linear system ().

2) On rearranging the observation equations:
 GC×“SSH(r,θ,φ) + ε = a(GPS) – (aLS + aTID + aREL + aNG) 

Now Geopotential coefficients GC can be solved for.
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ACC calibration by acceleration approach: ASU1 version
Linear system of observation equations to estimate calibration parameters B/S:

aNG
(GPS) = B + S.aACC

(UNCAL) + ε ()

 Calibration standard: GPS-based NG accelerations, aNG
(GPS) = a(GPS) – aGRAV

 Assumption: uncertainty in modelled accelerations of gravitational origin
aGRAV = ageop + aLS + aTID + aREL is negligible relative to that of a(GPS)

 Problem: Numerical derivative amplifies noise in GPS positions
Solution: Generalized least squares (GLS)
→ linear transformation of system ()

 Problem: Real data → GPS positions have correlated errors
Solution: partial autocorrelation function (PACF) → autoregressive model (AR)
→ linear transformation of system ()

 Solving transformed system () we get calibration parameters B/S by ordinary least squares.

1ASU…Astronomical Institute ASCR
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Problem of amplified noise
 Accelerations: d2r/dt2 ≈ a(GPS) ≡ F  r

 The second derivative filter F amplifies the 
noise in the GPS positions, 
especially high-frequency noise

 Figs: example for nongravitational forces, 
the “true” signal a(SIM)

NG is buried in noise

 Moreover, through the action of filter F, 
the noise become also autocorrelated

 Smoothing is a possible way out, but:
further autocorrelation of residuals
signal is heavily smoothed too
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Problem of autocorrelated noise
Linear system of observation equations to estimate calibration parameters B/S:

aNG
(GPS) = B + S.aACC

(UNCAL) + ε ()

 Ordinary least squares (OLS) provide correct uncertainty estimates
for the fitted parameters (usual ”3-σ rule”), 
if the errors ε are independent and normally distributed

 If the random errors are positively correlated
uncertainty in the fitted parameters is underestimated
overly optimistic accuracy estimates

 In Eq. () filter F generates a correlation structure of random noise in aNG
(GPS)
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Generalized least squares (GLS)
 Autocorrelated errors in OLS problem → non-diagonal covariance matrix C≠σ2I

 GLS defines linear transformation: W=T-1, where C=TT’ (T … “square root” of C)
→ new covariance matrix is diagonal

 In transformed variables, OLS may now used
correct estimates of mean values and uncertainties of the parameters
correct estimates of confidence intervals

 In statistics, GLS estimator is also called the Aitken estimator

 Sometimes the GLS method is already “contained” in Gauss-Markov theorem
when using weight matrix P=C-1
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Use of GLS to remove autocorrelation and HF noise
Linear system of observation equations to estimate calibration parameters B/S:

aNG
(GPS) = B + S.aACC

(UNCAL) + ε ()

 In fact, non-diagonal covariance matrix was generated by the second derivative filter F: 
C=σ2FF’, where σ2 is the variance of the white noise in GPS positions

→ finding the GLS transformation matrix is straightforward: W=F-1

 W=F-1 is inverse to second derivative filter → application of W is “double integral”
 Effectively, we got back into the positions, but now with known part of signal removed

 After applying the GLS transformation W to eq. ():
the residuals become again uncorrelated
the variance σ2 of noise in GPS positions may be estimated
high-frequency noise amplification is eliminated
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Decorrelation of GPS position errors using AR process
Problem: Real GPS positions have correlated errors
 Indicated by sample autocorrelation function ACF

Partial autocorrelation function PACF
Rapid decay of PACF → suitability of AR model to 
represent the correlation structure
 In figure, fitted autoregressive model AR of order 4

approximates ACF of residuals

Decorrelation of residuals using fitted AR models
 by linear transformation of calibration system ()
 ACF and PACF become approx. delta functions

Calibration parameters B/S have realistic error bars
 Correct estimates of ACC data uncertainty!

Estimation of geopotential coefficients GC
 After decorrelation, GC are more accurate by factor 2–3!
 More realistic uncertainty estimate of GC
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Real data: calibration of GRACE accelerometers
 Period of two satellite revolutions
 Amplification of noise due to second derivative

 Residuals after first linear transformations
 Errors in GPS positions of few cm

 Obvious autocorrelation (sample ACF)
 PACF falls down quickly
→ we estimated AR process of order 7

 Residuals after second linear transformation 
derived from fitted AR(7) process

 Both ACF and PACF now indicate that 
residuals become uncorrelated
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Calibration of 1.5 years of GRACE accelerometers data
 Due to a large bias B, the calibration 

parameters B and S are highly correlated

 We set S fixed after GRACE TN-04-02 
→ bias offsets have similar time evolution

Further information
 http://www.asu.cas.cz/~bezdek/vyzkum/
 Bezděk A, 2010. Calibration of accelerometers aboard GRACE satellites by comparison with 

POD-based nongravitational accelerations. Journal of Geodynamics 50, 410–423.
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Gravity field models from orbits of CHAMP, GRACE, GOCE
Examples of successful application of the presented 

calibration method to estimate geopotential coefficients.
 One-day solutions

 CHAMP yearly solution for 2003

 GOCE two-month solution

 Average hydrological signal in CHAMP and GRACE 
solutions over 7 years (time-variable gravity)
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Contribution to SWARM validation activities
Pertinent Level-2 products
 ACCxCAL_2_: Accelerometer calibration parameters for all three SWARM satellites
 ACCx_AE_2_: Time series of calibrated accelerometer data
 Level 2 precise kinematic orbits

The presented ACC calibration method
 Independent assessment of ACC calibration parameters
 Output: calibrated ACC measurements together with realistic uncertainty estimates
 Implemented solely by our team, independent of any other orbital sw package
 Was tested using real-world ACC data of CHAMP and GRACE with positive results
 No special manoeuvres are necessary, method is applicable during science free-fall regime
 During routine phase: it may operate offline (CAT-1 algorithm)

Apart from calibrating ACC data, we will compute SWARM-only gravity field models
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