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Calibration of Swarm accelerometers 
by means of kinematic orbits 

and gravity field models

 Background and objectives
 Calibration method
 Results using real data
 Contribution to SWARM validation activities
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Forces acting on LEO satellites
 Satellites in Low Earth Orbits (LEO): 

altitudes 100-2000 km
 Dominant is the central gravitational field
 Other forces act as small perturbations

Accelerations of gravitational origin
 central geopotential term
 noncentral geopotential terms
 lunisolar perturbations
 solid-Earth and ocean tides
 relativistic effects

Nongravitational accelerations
 atmospheric drag
 radiation pressures 

(direct solar, albedo, terrestrial infrared)

 Magnitudes
μ/r à J2 à GRAV rest, DRAG, LUNISOL > SETID > OTID,DSRP > ALB, IR, RELAT
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Space accelerometers
 Designed to measure tiny nongravitational accelerations
 Aboard the satellites: CHAMP, GRACE, GOCE

 Magnitude of nongravitational accelerations: 
Along-track: 10-7 – 10-5 m.s2

Cross-track: 10-9 – 10-6 m.s2

Radial: 10-9 – 10-7 m.s2

 Due to the smallness of the nongravitational signal 
compared to gravity, space accelerometers cannot be 
calibrated on the ground.
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Uncalibrated ACC data
 Waveforms of uncalibrated ACC signal and 

simulated NG accelerations are quite similar.

 Spikes in cross-track and radial  components 
correspond to cold-gas thruster firings.

 RAD component
Orbit geometry → passage through zero
ACC data have offset

 Comparison of range on y-axes
ACC data are orders of magnitude out

 Need to calibrate the ACC readouts
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Acceleration approach
 GPS positions r with constant time step → numerical second derivative of r(t) 
→ GPS-based accelerations d2r/dt2 ≈ a(GPS)

Newton’s second law:      a(GPS) ≈ d2r/dt2 = ageop + aLS + aTID + aREL + aNG

ageop(r) ≡  GC× “SSH(r,θ,φ) … geopotential in spherical harmonics
aLS , aTID , aREL , aNG … lunisolar action, tides, relativity, nongravitational forces

Two applications:
1) Assume the geopotential is known and define GPS-based NG accelerations

aNG
(GPS) = a(GPS) – (ageop + aLS + aTID + aREL)

aNG
(GPS) = B + S.aACC

(UNCAL) + ε ()
Calibration parameters B/S for ACC are obtained by solving linear system ().

2) On rearranging the observation equations:
 GC×“SSH(r,θ,φ) + ε = a(GPS) – (aLS + aTID + aREL + aNG) 

Now Geopotential coefficients GC can be solved for.
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ACC calibration by acceleration approach: ASU1 version
Linear system of observation equations to estimate calibration parameters B/S:

aNG
(GPS) = B + S.aACC

(UNCAL) + ε ()

 Calibration standard: GPS-based NG accelerations, aNG
(GPS) = a(GPS) – aGRAV

 Assumption: uncertainty in modelled accelerations of gravitational origin
aGRAV = ageop + aLS + aTID + aREL is negligible relative to that of a(GPS)

 Problem: Numerical derivative amplifies noise in GPS positions
Solution: Generalized least squares (GLS)
→ linear transformation of system ()

 Problem: Real data → GPS positions have correlated errors
Solution: partial autocorrelation function (PACF) → autoregressive model (AR)
→ linear transformation of system ()

 Solving transformed system () we get calibration parameters B/S by ordinary least squares.

1ASU…Astronomical Institute ASCR
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Problem of amplified noise
 Accelerations: d2r/dt2 ≈ a(GPS) ≡ F  r

 The second derivative filter F amplifies the 
noise in the GPS positions, 
especially high-frequency noise

 Figs: example for nongravitational forces, 
the “true” signal a(SIM)

NG is buried in noise

 Moreover, through the action of filter F, 
the noise become also autocorrelated

 Smoothing is a possible way out, but:
further autocorrelation of residuals
signal is heavily smoothed too



9

Problem of autocorrelated noise
Linear system of observation equations to estimate calibration parameters B/S:

aNG
(GPS) = B + S.aACC

(UNCAL) + ε ()

 Ordinary least squares (OLS) provide correct uncertainty estimates
for the fitted parameters (usual ”3-σ rule”), 
if the errors ε are independent and normally distributed

 If the random errors are positively correlated
uncertainty in the fitted parameters is underestimated
overly optimistic accuracy estimates

 In Eq. () filter F generates a correlation structure of random noise in aNG
(GPS)
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Generalized least squares (GLS)
 Autocorrelated errors in OLS problem → non-diagonal covariance matrix C≠σ2I

 GLS defines linear transformation: W=T-1, where C=TT’ (T … “square root” of C)
→ new covariance matrix is diagonal

 In transformed variables, OLS may now used
correct estimates of mean values and uncertainties of the parameters
correct estimates of confidence intervals

 In statistics, GLS estimator is also called the Aitken estimator

 Sometimes the GLS method is already “contained” in Gauss-Markov theorem
when using weight matrix P=C-1
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Use of GLS to remove autocorrelation and HF noise
Linear system of observation equations to estimate calibration parameters B/S:

aNG
(GPS) = B + S.aACC

(UNCAL) + ε ()

 In fact, non-diagonal covariance matrix was generated by the second derivative filter F: 
C=σ2FF’, where σ2 is the variance of the white noise in GPS positions

→ finding the GLS transformation matrix is straightforward: W=F-1

 W=F-1 is inverse to second derivative filter → application of W is “double integral”
 Effectively, we got back into the positions, but now with known part of signal removed

 After applying the GLS transformation W to eq. ():
the residuals become again uncorrelated
the variance σ2 of noise in GPS positions may be estimated
high-frequency noise amplification is eliminated
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Decorrelation of GPS position errors using AR process
Problem: Real GPS positions have correlated errors
 Indicated by sample autocorrelation function ACF

Partial autocorrelation function PACF
Rapid decay of PACF → suitability of AR model to 
represent the correlation structure
 In figure, fitted autoregressive model AR of order 4

approximates ACF of residuals

Decorrelation of residuals using fitted AR models
 by linear transformation of calibration system ()
 ACF and PACF become approx. delta functions

Calibration parameters B/S have realistic error bars
 Correct estimates of ACC data uncertainty!

Estimation of geopotential coefficients GC
 After decorrelation, GC are more accurate by factor 2–3!
 More realistic uncertainty estimate of GC
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Real data: calibration of GRACE accelerometers
 Period of two satellite revolutions
 Amplification of noise due to second derivative

 Residuals after first linear transformations
 Errors in GPS positions of few cm

 Obvious autocorrelation (sample ACF)
 PACF falls down quickly
→ we estimated AR process of order 7

 Residuals after second linear transformation 
derived from fitted AR(7) process

 Both ACF and PACF now indicate that 
residuals become uncorrelated
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Calibration of 1.5 years of GRACE accelerometers data
 Due to a large bias B, the calibration 

parameters B and S are highly correlated

 We set S fixed after GRACE TN-04-02 
→ bias offsets have similar time evolution

Further information
 http://www.asu.cas.cz/~bezdek/vyzkum/
 Bezděk A, 2010. Calibration of accelerometers aboard GRACE satellites by comparison with 

POD-based nongravitational accelerations. Journal of Geodynamics 50, 410–423.
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Gravity field models from orbits of CHAMP, GRACE, GOCE
Examples of successful application of the presented 

calibration method to estimate geopotential coefficients.
 One-day solutions

 CHAMP yearly solution for 2003

 GOCE two-month solution

 Average hydrological signal in CHAMP and GRACE 
solutions over 7 years (time-variable gravity)
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Contribution to SWARM validation activities
Pertinent Level-2 products
 ACCxCAL_2_: Accelerometer calibration parameters for all three SWARM satellites
 ACCx_AE_2_: Time series of calibrated accelerometer data
 Level 2 precise kinematic orbits

The presented ACC calibration method
 Independent assessment of ACC calibration parameters
 Output: calibrated ACC measurements together with realistic uncertainty estimates
 Implemented solely by our team, independent of any other orbital sw package
 Was tested using real-world ACC data of CHAMP and GRACE with positive results
 No special manoeuvres are necessary, method is applicable during science free-fall regime
 During routine phase: it may operate offline (CAT-1 algorithm)

Apart from calibrating ACC data, we will compute SWARM-only gravity field models
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