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Summary

Inversion method
¢ Data: kinematic orbits, SST high-low (CHAMP, GRACE, GOCE)

¢ Acceleration approach: Newton's second law relates the
observed acceleration of the satellite with forces acting on it

« Observed accelerations: numerical 2" derivative of GPS orbits
e Other forces: modelled (e.g. tides) or measured (nongrav. acc.)

Some original elements of our inversion method
¢ Aim: simple, straightforward and statistically correct model

e Model is linear in harmonic coefficients, no a priori gravity field
model is needed, no regularization is applied

* Amplified noise due to numerical derivative mitigated by
Generalized Least Squares (linear transformation)

e Decorrelation of errors in GPS positions significantly improves
the accuracy of harmonic coefficients by a factor of 2-3

e Separately computed along-track, cross-track and radial
solutions merged into combined solution using normal matrices

Results from real-world data of CHAMP, GRACE, GOCE

¢ Kinematic orbits of CHAMP and GRACE: 7 years (2003-2009)
Kinematic orbits of GOCE: 2 months (Nov/Dec 2009)

¢ Long-term static gravity field models (CHAMP, GRACE, GOCE):
similar or better quality compared to other published solutions

* Time variable gravity (CHAMP, GRACE): mean annual signal
clearly shows important hydrological variations on continents

e Geocentre motion (GRACE): estimated degree-one coefficients
display seasonal variations in accordance with results from
other measurement techniques

e Computations performed on ordinary PC up to max. degree 120

Method of inversion

(1) Linear regression model
[> SC x VSSH(r,0,0) = d’r/dt’ — (aLs + atp + anc)|

Stokes coefficients (SC) are obtained from observational
equations, where:

VSSH...gradient of solid spherical harmonics
d?r/dt?...observed accelerations

ais ... lunisolar effects; atp ... solid Earth and ocean tides

anc ... acc. of nongravitational origin (drag, radiation pressures)

(2) Numerical approximation to the second derivative

¢ Digital filter of the second derivative is an approximation to the
analytical operation. Solutions may differ significantly depending
on the particular choice of the filter parameters.
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(3) Mitigation of noise amplification
¢ Problem: Numerical derivative amplifies noise in GPS positions

¢ Solution: Generalized least squares (GLS) — application of GLS
leads to linear transformation of model (1)

(4) Decorrelation of noise in GPS positions
¢ Problem: GPS positions have correlated errors

¢ Solution: Sample autocorrelation function (ACF) and especially
partial autocorrelation function (PACF) indicate suitability of
autoregressive model (AR) to represent correlation structure

* Decorrelation of residuals improved the accuracy of harmonic
coefficients by a factor of 2-3

e Decorrelation again defines a linear transformation of model (1)

(a) Correlated residuals (b) Decorrelated residuals
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Results for real orbits

(5) Gravity field from one day of real data

e Model (1) is linear in SC, no a priori gravity field model is used.
After applying two linear transformations (3) and (4), SC are
obtained directly in one step using the ordinary least squares.

* Graphs show reasonable results for real data (max. degree 10)
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(6) Along-track, cross-track and radial solutions combine
o We found it better first to compute individual solutions for

along-track (A-T), cross-track (C-T) and radial (RAD) directions.

e Then we obtained a combined solution using normal matrices.

¢ Relative contribution of the along-track component to the
combined solution is 50 percent on average.
(b) C-T:32.9%

(a)A-T:49.7 %
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(7) Along-track solution vs. combined solution

» Systematically, individual along-track solutions give worse
results compared to combined solutions.

e Polar gap of GOCE: the combined solutions give better
near-zonal coefficients than along-track ones.
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(8) Gravity field model from orbits of CHAMP in 2003

e This CHAMP solution was computed by many groups
(see http://icgem.gfz-potsdam.de/)

» Satisfactory behaviour of our solution (ASU-CHAMP-03) is also
due to improved processing of kinematic orbits by AIUB
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(9) Seven-year solutions from CHAMP and GRACE orbits

¢ Apart from physical causes of difference (e.g. mean altitude:
CHAMP...400 km, GRACE...500 km), also the quality of GPS
data and parameters of the method may play the role (e.g. (2))
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(10) First results for GOCE

¢ This is our preliminary result compared to the ESA solution,
whose long-wave part is supposed to be not regularized

¢ In the ESA solution, SGG data start to dominate from degree 25
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(11) Time variable gravity from GPS orbits (CHAMP, GRACE)

¢ The acquired average annual signal shows clearly well-known
continental areas with important hydrological variations

Mean annual variation: UTCSR (2002-2011)
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Mean annual variation: GRACE A (2003-2009)
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(12) Geocentre motion

¢ We tried to estimate the degree-one harmonic coefficients,
which correspond to the geocentre motion

¢ Our orbit-based seasonal variations are in accordance with
results from other measurement techniques

Data set X vy 7
amp(mm) phase(deg) | amp(mm) phase(deg) | amp(mm)
3.0 £ 1.2 53.9 £+ 22.3 25+ 1.0 -39.7+£21.7 | 46+ 1.9

Time span
phase(deg)
35.4 £ 23.4 | 20052011

SLR: UTCSR

Rietbroek et al 2011 | 2.0 = 0.5 58.9 + 14.5 3.6 £0.4 -40.6 £ 6.3 3.6 £ 0.7 16.1 = 11.6 | 2005-2009
Swenson et al 2008 1.6 = 0.3 99.7 £+ 11.1 1.2 £ 0.4 -88.8 +£ 16.8 | 2.1 £ 0.3 96.0 + 7.2 2005-2010
ASU: GA0509 1.2+ 0.8 103.3 £ 37.1 | 1.3 £ 0.8 -21.6 £ 36.4 [ 4.0 £ 2.6 11.7 = 37.3 | 2005-2009
ASU: GB0509 1.1 +0.7 68.0 + 39.1 1.4+ 0.9 -19.7 £ 35.6 | 4.6 + 2.9 7.7 £ 36.2 2005-2009
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