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Abstract

The aim of our work is to generate Earth’s gravity field models from GPS positions of low Earth orbiters. Our inversion method
is based on Newton’s second law, which relates the observed acceleration of the satellite with forces acting on it. The observed
acceleration is obtained as numerical second derivative of kinematic positions. Observation equations are formulated using the gradient
of the spherical harmonic expansion of the geopotential. Other forces are either modelled (lunisolar perturbations, tides) or provided
by onboard measurements (nongravitational perturbations). From this linear regression model the geopotential harmonic coefficients
are obtained.

To this basic scheme of the acceleration approach we added some original elements, which may be useful in other inversion
techniques as well. We tried to develop simple, straightforward and still statistically correct model of observations. (i) The model is
linear in the harmonic coefficients, no a priori gravity field model is needed, no regularization is applied. (ii) We use the generalized
least squares to successfully mitigate the strong amplification of noise due to numerical second derivative. (iii) The number of other
fitted parameters is very small, in fact we use only daily biases, thus we can monitor their behaviour. (iv) GPS positions have correlated
errors. The sample autocorrelation function and especially the partial autocorrelation function indicate suitability of an autoregressive
model to represent the correlation structure. The decorrelation of residuals improved the accuracy of harmonic coefficients by a factor
of 2–3. (v) We found it better to compute separate solutions in the three local reference frame directions than to compute them together
at the same time; having obtained separate solutions for along-track, cross-track and radial components, we combine them using the
normal matrices. Relative contribution of the along-track component to the combined solution is 50 percent on average. (vi) The
computations were performed on an ordinary PC up to maximum degree and order 120.

We applied the presented method to orbits of CHAMP and GRACE spanning seven years (2003–2009) and to two months of
GOCE (Nov/Dec 2009). The obtained long-term static gravity field models are of similar or better quality compared to other published
solutions. We also tried to extract the time-variable gravity signal from CHAMP and GRACE orbits. The acquired average annual
signal shows clearly the continental areas with important and known hydrological variations.
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1. Introduction

In the ‘Decade of the geopotential’ (2000–2010) three ma-
jor satellite missions were launched with the aim to significantly
improve the global gravity field model of the Earth.

In 2000 the German satellite CHAMP (CHAllenging Min-
isatellite Payload) was put in a 450-km orbit inclined at 87.3◦

(Reigber et al., 2002). It was a realization of the concept called
satellite-to-satellite tracking in the high-low mode (GPS-SST):
A low Earth orbiter is tracked by high orbiting GPS satellites,
relative to a net of ground stations. Nongravitational forces act-
ing on the low orbiter are measured by an onboard accelerometer
(Rummel, 2002). The use of an onboard geodetic-quality GPS
receiver and efficient postprocessing provided a long series of
precise 3-D positions with constant time step. CHAMP proved
that GPS-SST is a very effective technique for global gravity field
mapping; already the first CHAMP models improved the pre-
CHAMP satellite-only models by an order of magnitude in low
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degrees (Reigber et al., 2003a). The CHAMP satellite decayed
from its orbit in 2010.

The German/US GRACE mission (Gravity Recovery And
Climate Experiment), launched in 2002, consists of two satellites
freely decaying from an initial 500-km orbit inclined at 89◦ (Ta-
pley et al., 2004). In this way the concept of satellite-to-satellite
tracking in the low-low mode was first realized. The relative mo-
tion between the GRACE A and GRACE B satellites following
each other in the same orbit at a distance of 220 km is measured
by K-band microwave ranging (KBR). The technique of satellite-
to-satellite tracking based on GRACE KBR data currently yields
the best global gravity fields at low to medium degrees (Tapley
et al., 2007; Mayer-Gürr et al., 2010). The GRACE mission has
launched a new era in studying time-variations of Earth’s gravity
field observed from space (for recent review of results, see e.g.
Cazenave and Chen, 2010; Chambers and Schröter, 2011).

Finally, in 2009 the European Space Agency launched
GOCE (Gravity Field and Steady-State Ocean Circulation Ex-
plorer), a satellite carrying the first space gradiometer, to a
sun-synchronous orbit with an inclination of 96.7◦ (ESA, 1999;
Floberghagen et al., 2011). In satellite gravity gradiometry
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(SGG), the second-order derivatives of the Earth gravitational
potential are measured by a low orbiting satellite using differen-
tial accelerometry (Rummel, 2002). The extremely low GOCE
observation altitude of 255 km and less is enabled by the action
of an onboard ion thruster (drag-free control), which success-
fully compensates for the atmospheric drag. The gravity fields
from SGG should be best at medium to high degrees, which is
indeed the case (Pail et al., 2011a). The noise characteristics of
the GOCE gradiometer does not allow its data to be used for
the accurate recovery of the low-degree harmonics of the gravity
field. For this purpose an onboard GPS receiver is used, and the
full GOCE gravity fields are obtained by combining data from
the GPS-SST and SGG techniques.

The primary motivation behind the study presented in this
paper was to compute a gravity field model up to say degree 70
through inversion of satellite orbits (Bezděk et al., 2012). With
the availability of precise kinematic positions from the contin-
uous GPS tracking of CHAMP (Švehla and Rothacher, 2005;
Švehla and Földváry, 2006), new computational approaches
emerged (Reigber et al., 2003b; Reigber et al., 2005b). From
these we chose the acceleration approach, which we subse-
quently modified. In connection with the launch of the CHAMP
mission, the general idea of the acceleration approach was pro-
posed and discussed by several authors (e.g. Reubelt et al., 2003,
2006; Götzelmann et al., 2006; Ditmar and Sluijs, 2004; Sluijs,
2002; Schäfer, 2000). The acceleration approach has a number
of interesting features: it is conceptually very simple, it pro-
duces a linear regression system for the unknown geopotential
coefficients (no linearization is necessary), all three GPS posi-
tion components are used, in principle it could be treated on an
ordinary personal computer. It was estimated that the gravity
field models from the GRACE KBR data would be two orders
of magnitude more accurate in low degrees compared to mod-
els based on GPS-SST (ESA, 1999; Rummel, 2002). The cur-
rent KBR models are indeed superior, recent ITG-Grace2010S
model (Mayer-Gürr et al., 2010) has half the GPS/levelling error
compared to the GPS-SST model AIUB-CHAMP03S (Prange,
2010), as can be seen in the evaluation section of the ICGEM
website (http://icgem.gfz-potsdam.de/ICGEM/). But the evalu-
ation results depend a lot on the maximum degree used, Jäggi
et al. (2011a) show that the validation results are virtually the
same for these two models, when the harmonic coefficients up to
degree 60 are used. Geographical maps of time-variable gravity
show clearly that the accuracy of KBR monthly fields is at least
10 times better compared to monthly solutions from GPS-SST.
However, it is of great use to be able to compute orbit-based
gravity field models as accurately as possible. Nowadays the
majority of low Earth orbiters are standardly equipped with on-
board GPS receivers which might provide valuable data for grav-
ity field modelling. The combination of precise orbital data from
many such missions suitable for the inversion into harmonic co-
efficients would certainly be profitable for the static geopotential
models, perhaps even more for studying the time-variable grav-
ity. Monitoring temporal gravity field variations with the KBR
technique may not be possible for some time, if the GRACE mis-
sion fails prior to the launch of its follow-on mission; in that case,
GPS-SST data, as those from the Swarm mission to be launched
by ESA in 2013 (ESA, 2004), may serve as a source of informa-

tion about the time-varying gravity field. Besides, Gunter et al.
(2011) recently showed that a constellation of several tens of
low-Earth satellites equipped with GPS receivers might possibly
complement and reinforce a GRACE-like mission.

The purpose of this paper is to present our method in detail
(Section 2) and the first results obtained (Section 3). Readers,
who may want to avoid the technical and implementation details
of the method, could skip Sections 2.2–2.5 and go directly to Sec-
tion 3 with the results. These include the static and time-variable
gravity field models from CHAMP and GRACE A/B orbits, and
first results for GOCE. In Section 4 conclusions and outlook will
be given. Our yearly and multi-year geopotential solutions to-
gether with their full covariance matrices are available for down-
load at http://www.asu.cas.cz/∼bezdek/vyzkum/geopotencial/.

2. Method

2.1. Linear regression model

For global gravity field analysis, the geopotential V at the
point with spherical coordinates (radius r, co-latitude θ , longi-
tude λ ) is represented in spherical harmonics up to degree N as

V (r,θ ,λ ) =
GM

r

N

∑
n=0

(
R
r

)n

n

∑
m=0

Pnm(cosθ) [Cnm cosmλ +Snm sinmλ ] ,(1)

where GM is the geocentric gravitational constant, R the Earth’s
equatorial radius, Pnm the fully normalized associated Legendre
functions of degree n and order m, Cnm and Snm the geopotential
harmonic coefficients. For later reference, we will rewrite the
geopotential harmonic series (1) in a shorter form

V (r) = ∑
n,m

[
CnmV (c)

nm (r)+SnmV (s)
nm (r)

]
(2)

to explicitly show its linearity in the harmonic coefficients Cnm
and Snm.

The so-called acceleration approach is based on Newton’s
second law, which relates the forces acting on a body and its
motion caused by these forces. Expressed in accelerations for a
satellite in low Earth orbit, we will use Newton’s second law in
the form

d2r
dt2 = agrav +aLS +aTID +aREL +aNG , (3)

where r is the position vector of the centre of mass of the satel-
lite, and the terms on the right-hand side reflect the force vectors
acting on the satellite: agrav gravitational acceleration due to the
geopotential, aLS (direct) lunisolar perturbations, aTID accelera-
tion due to solid Earth and ocean tides, aREL correction due to
general relativity, aNG nongravitational accelerations. Now we
rearrange the terms in Eq. (3) to yield the regression model.

We numerically approximate the second derivative of the po-
sition vector r by double differentiation of GPS positions rgps.
We do this by using polynomial smoothing filters. A polynomial
Q of a chosen order is least-squares fitted to the data points within
a running window; the approximate second derivative of r at the
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central point of the window is obtained by the differentiation of
the fitted polynomial

d2r/dt2 ≈ d2Q(rgps)/dt2 ≡ F ∗ rgps . (4)

For later reference, we will symbolically write the filtering of
positions as the convolution of the second-derivative filter F and
the radius-vector rgps. More about choosing the polynomial fil-
ters will be in Sect. 2.2.

The gravitational acceleration agrav is interpreted as the gra-
dient of the geopotential V (r) as given in Eqs. (1) or (2)

agrav(r) = ∇V (r) = ∑
n,m

[
Cnm∇V (c)

nm +Snm∇V (s)
nm

]
. (5)

The lunisolar acceleration aLS, the acceleration aTID due to
the solid Earth and ocean tides, and the relativistic corrective
term aREL are all computed using the recent models (Sect. 2.5).
For the nongravitational accelerations aNG we use observations
from the onboard accelerometers. We will denote these acceler-
ations by

aother ≡ (aLS +aTID +aREL +aNG) (6)

and give more details about their treatment in Sect. 2.5.

Linear regression model — Substituting Eqs. (4)–(6) into
(3), we obtain the observation equation

d2Q(rgps)

dt2 −aother = ∑
n,m

[
Cnm∇V (c)

nm +Snm∇V (s)
nm

]
+ ε . (7)

We obtain the harmonic coefficients Cnm and Snm by solving the
regression model, where one observation equation (7) is given at
each GPS position of the satellite. There, the unknown harmonic
coefficients Cnm and Snm are linearly connected to the observed
acceleration d2Q(rgps)/dt2– aother. We assume the term aother to
have negligible uncertainty compared to that originating in GPS
positions, therefore we treat aother as a deterministic vector (i.e.
a vector not having a random component). The stochastic error
ε represents the GPS-position observation error propagated to
the acceleration domain. Equation (7) is linear in Cnm and Snm,
hence no a priori gravity field model is needed and the sought
harmonic coefficients Cnm and Snm could be obtained directly in
one step using the ordinary least squares. The rest of Sect. 2 will
be devoted to the discussion of numerical difficulties involved
in this seemingly straightforward scheme. As mentioned in the
introduction, readers interested in the results obtained from real
data may omit the technical and implementation details of the
presented method at first reading and may now go directly to
Sect. 3.

Here we add a note explaining the choice of observation
equations (7) in the domain of accelerations. The common way
of solving the differential equations like the Newton law (3) is
by integration. This is especially true in analytical treatment. In
our study, we are provided with the observed precise positions.
We can apply numerical differentiation to obtain a vector of ob-
served accelerations (4). In our preceding paper (Bezděk, 2010),
we found out that polynomial differentiation is a sort of Taylor
series, which enables one to choose more or less arbitrarily the
level of approximation of the numerical second derivative, the

level is set by the objective of the research. Advantage of hav-
ing the observational equations (7) in the acceleration domain is
that we may easily apply the same filter to the columns of the de-
sign matrix (and also to the vector aother). Thus even if the signal
is somewhat distorted by the approximate derivative, exactly the
same distortion is applied to the basis functions (columns of de-
sign matrix). Also as regards other modelled acceleration terms
aother, Eq. (6), it is easy to compute their point-wise values as ac-
celeration vectors, but it would probably be more difficult to treat
their numerically integrated values along the orbit. In this way, a
linear regression system of equations for unknown geopotential
coefficients, Eq. (7), was obtained in the acceleration domain.

In Sect. 2.2 we will discuss the choice of parameters for the
polynomial filter of the numerical second derivative. Numerical
differentiation of observational data containing random compo-
nent (noise) usually has an unfortunate consequence in amplify-
ing the noise and making it autocorrelated. Sect. 2.3 is devoted to
the mitigation of these two unwanted effects. In this section, we
suppose that the noise in the simulated GPS positions is uncorre-
lated normally distributed and that the only source of correlation
of noise in the derived accelerations is the second-derivative fil-
ter. We show that it is possible to find a linear transformation
matrix, whose application to the regression system (7) makes the
random component of the observations again uncorrelated. After
applying the linear transformation matrix to the regression sys-
tem (7), we call it the ‘once-transformed’ model. In Sect. 2.4
real satellite GPS positions are introduced in the method devel-
opment, they are input to the ‘once-transformed’ linear system
and the model parameters are fitted. We show that the observa-
tion residuals are correlated, when real GPS positions are used as
observations. Again, it is possible to find a linear transformation
matrix that makes the random component of the observations ap-
proximately uncorrelated. To find the transformation matrix we
make use of the covariance matrix of an estimated autoregres-
sive process. We apply the linear transformation matrix and we
call the new model ‘twice-transformed’. We show that for real
observations the residuals of the ‘twice-transformed’ regression
model are approximately uncorrelated normally distributed. This
is the final form of our regression model, now we can be more
confident in using statistical inference (e.g. error bars, covari-
ances) about the estimated geopotential coefficients. Finally, in
Sect. 2.5 other implementation details are presented.

2.2. Numerical approximation of second derivative

In Eq. (4) we introduced the polynomial filter d2Q(rgps)/dt2

as an approximation of second derivative of the satellite orbit
d2r/dt2. Here we use a FIR digital filter (finite impulse response
filter), an analogy to the operation of moving average, where each
data value is replaced by a linear combination of the data value
and some number of its nearby neighbours. The idea of poly-
nomial smoothing filters, also called Savitzky-Golay filters, is to
approximate the underlying function within the moving window
not by a constant (whose estimate is the average), but by a poly-
nomial (Press et al., 2001, p. 644). The polynomial Qk is of order
k higher than one, typically quadratic or quartic, for derivatives
usually k=4 or larger is taken (ibid, p. 645). For a given win-
dow length w, polynomial order k and order of the derivative
required, the filter coefficients are a set of constants. To preserve
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the phase of the input signal, we take w to be odd and we assign
the filter output value to the central point of the window. By its
definition, the polynomial filter necessarily smoothes the stud-
ied geopotential signal; it is possible to take this smoothing into
account easily, by applying the same filter (but only as a poly-
nomial smoothing, without taking the second derivative of the
polynomial coefficients) to the columns of the design matrix and
to the deterministic vector aother.
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Figure 1: Degree difference amplitudes between the estimated and known har-
monic coefficients. Example of experiments for choosing the optimum parame-
ters k-w of the second-derivative filter F (‘polynomial filter k w’). In the upper
panel we show the recovery for simulated orbits, in the lower panel for real orbits
of GRACE B in 2009.

In order to find the optimum values k and w for the second-
derivative polynomial filter F , we applied our inversion method
to simulated orbits computed with a known gravity field model.
To the simulated positions we added noise with different char-
acteristics (white or correlated noise, different values of its vari-
ance). We evaluated the success of the recovery of the original
harmonic coefficients using different criteria, e.g. the average or
median difference as a function of the order. In the upper panel
of Fig. 1 the results of a series of such experiments are shown
in terms of degree difference amplitudes (Sect. 3.4). It is evi-
dent that the quality of the recovery depends a lot on the chosen
pair of values k and w. The best two results using the simulated
orbits correspond to the filters with the k-w parameters 6-9 and
8-9. In the lower panel of Fig. 1 these two filters are applied to
one year of GRACE B data. Using real positions, the resulting
yearly solutions are different, clearly the filter 8-9 performs bet-
ter, probably because of systematic errors, which were not well
represented in the simulated orbits.

For choosing the optimum k-w filter parameters we tested
many configurations using the simulated and real orbits. Finally,
for the 10-sec CHAMP orbits we selected the best pairs 6-9 and
6-15, for the 30-sec GRACE A/B orbits the pair 8-9, for the 1-
sec GOCE orbit the 4-19 pair of the filter parameters. Different
results for individual satellites are caused mainly by different or-
bit sampling. (The choice of the reference gravity field model,
which we used when working with real orbits, is discussed in
Sect. 3.4.)

Press et al. (2001, p. 644) characterize Savitzky-Golay filters
as low pass filters, and as such their defining parameters have
impact on their action in the frequency domain. In accordance
with the examples in Press et al. (2001), our experience is that
the choice of the filter parameters, especially its order, has a sig-
nificant influence on what frequency content is preserved by ap-
plying the filter to the signal in question. The specific pair 8-9 of
filter parameters is in accordance with the results of other groups
(e.g., Baur et al., 2012).

Estimating the gravity field models from real data is a rather
complex procedure and every method has a certain number of in-
trinsic defining parameters. The purpose of this subsection was to
show that the chosen values of intrinsic parameters may be of pri-
mary importance for the results obtained, even if the method it-
self is comparable in its definition to other inversion methods. In
case of the acceleration approach and in the framework of com-
puting the longwave portion of the GOCE geopotential models
from GPS-SST data, recently there appeared several publications
dealing with similar problems, each having specific and some-
times somewhat different conclusions regarding the methodol-
ogy and optimum parameters (Baur et al., 2012; Zehentner et al.,
2012; Reubelt et al., 2012; Weigelt et al., 2011; Reubelt et al.,
2003).

2.3. Problem of noise amplification due to second derivative
It is common in scientific applications to have to calculate the

derivative of a function specified by experimental data, which is
corrupted by noise. Practitioners know that calculating numerical
derivatives will amplify this noise, often so much that the result is
useless. This general rule unfortunately applies to the orbit inver-
sion as well, even for the first derivative of GPS positions used in
the energy balance approach the noise amplification problem has
to be treated carefully (Weigelt and Sneeuw, 2005). For double
differentiation the amplification of noise is even worse, this can
be seen by using a Fourier transform pair (Press et al., 2001, p.
490)

h(t) ⇐⇒ H( f ) =
∫ +∞

−∞

h(t)e2πi f tdt , (8)

where h(t) is a time-domain function and H( f ) its frequency-
domain counterpart. The nth derivative in the time domain has
the transform

h(n)(t) ⇐⇒ (2πi f )nH( f ) (9)

so the first derivative dh/dt amplifies the noise contained in h as
a function of frequency f , the Fourier transform of the second
derivative d2h/dt2 is directly proportional to frequency squared.
The general expression given by Eq. (9) does not apply exactly
to the polynomial smoothing filters, described in the previous
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subsection; the major part of the noise component is indeed
strongly amplified, however, the filter also smoothes the highest-
frequency part of the signal; at low frequencies, there is also a
deviation caused by the fact that the functions under considera-
tion are defined in a limited (non infinite) time interval.

We used the presented inversion method first to calibrate the
GRACE onboard accelerometers (Bezděk, 2010). We showed
that in the along-track direction the variations in acceleration
due to nongravitational perturbations are approximately of the
same order of magnitude as the variations from the gravity field
terms of degree 50. In this case, the simulated 1-cm white noise
ε∗ in GPS positions is amplified by taking ε=d2Q(ε∗)/dt2 to
be at least 100 times larger than the studied gravity signal agrav
(ibid, cf. Figs. 1 and 5, where the signal is around 10−7 m s−2,
while the noise 10−4 m s−2). Stated otherwise, the cited
figures in Bezděk (2010) show that due to the action of the
second-derivative filter, the noise in GPS positions was indeed
amplified at least 100 times for gravitational accelerations of
interest. (Since atmospheric drag has varied considerably during
the GRACE lifetime, we note that these results apply to GRACE
orbital data from the year 2003. Degree 50 was found by
computing acceleration induced by the individual terms of the
geopotential spherical harmonic series and by comparing the
magnitude of these accelerations to that of the nongravitational
accelerations in the along-track direction (ibid, p. 413).)

Problem of autocorrelated errors — The Gauss-Markov
theorem states that in a linear model in which the errors have
expectation zero, are uncorrelated and have equal variances, the
best linear unbiased estimator of the coefficients is given by the
ordinary least-squares (OLS). Here ‘best’ means that the OLS
estimator has the smallest variance (e.g. Brockwell and Davis,
2002, p. 385). Observations gathered from experimental time se-
ries tend to have errors that are correlated since they are affected
by similar external conditions. The presence of autocorrelation
can be a problem of serious concern for the following reasons: (i)
The OLS estimators continue to be unbiased, but are no longer
the best estimators. (ii) The errors in the regression coefficients
may be seriously underestimated. Thus, the confidence intervals
and various tests of significance commonly employed would no
longer be strictly valid (Chatterjee and Hadi, 2006; Rawlings
et al., 1998).

When a digital filter is applied to a signal containing a ran-
dom component, the random errors residing at each data point
within the filter window are linearly combined to the new output
value; thus the newly formed vector has a random component,
which is autocorrelated. This is what happens when the polyno-
mial derivative filter F is applied to the time series rgps of GPS
positions. As mentioned, the studied geopotential signal agrav is
much smaller compared to the noise component ε . In our ex-
perience, the correct fit of the geopotential coefficients becomes
complicated even for the idealized simulated data with correlated
errors, because the noise correlation structure may create long-
wave artefact pseudo-signals, which may bias the OLS estimates.

Let us rewrite our regression model (7) in the usual statistical
notation

y = Xb+ ε , (10)

where the vector of observations is y=d2Q(rgps)/dt2– aother, the
design matrix X=[∇V (c)

nm ;∇V (s)
nm ] and the vector of estimated pa-

rameters b=[Cnm; Snm]. Suppose that from post-fit residual anal-
ysis and tests we have reason to believe that the error covariance
matrix is not equal to a scaled identity matrix, Var(ε) ≡ σ2V 6=
σ2I. The generalized least squares (GLS) then define a linear
transformation

W = T−1, where V = T T ′, (11)

which maps the original linear model into a new one,

y∗ = X∗b+ ε
∗, (12)

such that the covariance matrix of the transformed errors ε∗ be-
comes again a scaled identity matrix (e.g. Brockwell and Davis,
2002; Rawlings et al., 1998). Indeed,

Var(ε∗) =WVar(ε)W ′ = σ
2T−1T T ′T−1′ = σ

2I. (13)

In the transformed variables, y∗=Wy, X∗=WX , and the usual OLS
are then used to find the regression parameters b of the original
problem with correct estimates of their uncertainties. A simple
numerical example comparing the OLS vs. GLS estimates is in
Bezděk (2010, App. B).

In fact, the non-diagonal covariance matrix of the accelera-
tion random component ε in Eqs. (7) and (10) was created by
the action of the second-derivative filter F . Suppose now that
the noise in GPS positions is white, so its covariance matrix is
Var(ε∗)=σ2I. Then,

Var(ε) = FVar(ε∗)F′ = σ
2FF′, (14)

where F is a square matrix, generated from the coefficients of
the polynomial filter F and whose multiplication is equivalent to
the action of the filter (e.g., Gray, 2006). But the situation, where
we know the covariance matrix of the random errors in a linear
model, is exactly what the GLS method is suited for. In our case,
finding the GLS transformation matrix is straightforward,

W = F−1 . (15)

After applying W to the linear model (10) and after solving the
transformed equation (12) through the OLS, the residuals are
again uncorrelated and the original σ2 may be estimated.

Eq. (15) points out the meaning of the GLS transformation
matrix in that it transforms the model originally formulated in
accelerations back to positions. As for the actual implementa-
tion, we compute the matrix W from Eq. (14); first, the lower
triangular matrix T is found through the Cholesky decomposi-
tion of the covariance matrix FF′, then we obtain the matrix W
from T by its inversion (Eq. 11). The thus computed matrix W
is not equal to F−1, but this is not a problem, in fact we only
need Eq. (11) to be fulfilled. The first and last few numerical
derivative vectors d2Q(rgps)/dt2 are not valid as an approxima-
tion to the observed acceleration vectors d2r/dt2 because of the
filter transition phase. Therefore, we discard the corresponding
few first and last lines from the regression system (10), and also
from the filter matrix F, which is on the input to the Cholesky
decomposition.

Summarizing the contents of this subsection, application of
a numerical double differentiation filter to GPS positions in or-
der to obtain an approximate acceleration vector is possible, but
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has drawbacks in that the noise in GPS positions is strongly am-
plified and becomes autocorrelated. Both of these problems are
solved by a linear transformation of the regression model (7).
The transformation matrix W is found through the application of
the GLS estimation method. Correct estimates of the model pa-
rameters and their uncertainties are found from the transformed
model using OLS.

2.4. Decorrelation of errors in GPS positions

The GLS transformation matrix W defined in Eq. (15) is a
sort of inverse mapping to get from the acceleration domain back
to the position domain. As a test of the transformed regression
model (12), using a known geopotential model (e.g. EIGEN-6S,
Förste et al., 2012) we can generate precise satellite positions,
which will represent the ‘true orbit’, and add to them 1-cm uncor-
related normally distributed errors. This ‘true’ orbit with added
noise represents the input positions rgps to our observation equa-
tions (7), from which the satellite accelerations are obtained as
described in Sect. 2.2 and the system of observation equations
is decorrelated according to Sect. 2.3. The solution of the GLS-
transformed linear system (12) produces the original harmonic
coefficients, and the regression residuals are indeed uncorrelated
normally distributed with an estimated standard error close to 1
cm.

At this point, the real-world GPS positions of low Earth satel-
lites enter the method development. If instead of the simulated
orbits with idealized white noise, real GPS positions are used to
obtain the geopotential harmonic coefficients, systematically the
regression residuals are strongly correlated. In the left panel of
Fig. 2, the sample autocorrelation function (ACF) displays strong
correlation of the residuals obtained by solving the transformed
linear system (12).

The fact that the random errors in the neighbouring GPS
positions are correlated is not surprising (Baur et al., 2012;
Ditmar et al., 2007; Jäggi et al., 2011c; Reubelt et al., 2003).
During a small time step between two consecutive GPS
observations of a low-Earth satellite (e.g. 10 seconds for
CHAMP), the constellation of the much higher flying GPS
satellites used to determine the two positions is almost the same.
In Fig. 2, the estimated correlation length is about 25 min (a
lag of 50), i.e. about a quarter of the orbital period of GRACE B.
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Figure 2: Sample statistics of the fit residuals; on the left, residuals from the
once-transformed model (12), on the right, residuals from the twice-transformed
model (16). Symbols: ACF sample autocorrelation function, PACF sample par-
tial autocorrelation function, ACF(AR) autocorrelation function for the fitted AR
model, for details please see the text. Data: GPS positions of GRACE B spanning
the year 2009, the unit of lag (time interval) is 30 sec.

Autoregressive model — In time series analysis, after de-
terministic components like trends and seasonal variations have
been removed, in order to use statistical inference we may try
to represent the behaviour of the stationary residuals by some
simple probabilistic model. Apart from the moving average
model, which was already mentioned when speaking about the
differentiation filter, another useful class of time series models
are the autoregressive processes. Loosely speaking, a sequence
of independent random variables Zt as a function of time t may
be transformed into a new output sequence by two basic ways.
We can define a running window of a finite length and combine
the input values Zt within the window to produce a new output
random variable Xt=∑k θkZt−k, where θk are constant weighting
factors. Another possibility to create a correlation structure is to
use recursion, the output value Yt at time t is given as a linear
combination of the preceding output values, Yt=∑

p
k=1 φkYt−k+Zt ,

where φk are model parameters. In this way an autoregressive
model of order p, AR(p), is defined.

In the same way as the autocorrelation function is used to
identify the correlation length for moving average models, the
order of an autoregressive model may be estimated from the
sample partial autocorrelation function (PACF). For an AR(p)
process the partial autocorrelation function is zero for lags
greater than p. In practice, if an AR(p) model is appropriate for
the data, then the values of the sample PACF for lags greater
than p should be compatible with observations from normal
distribution N(0,1/n) with zero mean and standard deviation
σ2=1/n, where n is the number of samples. For a more detailed
explanation of time series analysis methods see e.g. Brockwell
and Davis (2002). We note that usage of autoregressive models
in the context of satellite gravity gradiometry was recently
discussed several times, see e.g. Schuh (1996); Klees et al.
(2003); Siemes (2008).

Fitted AR model and decorrelation of residuals — In the
left panel of Fig. 2, the sample PACF, computed from the
residuals of the model (12), falls rapidly towards zero at lags
higher than 4, which is an indication that an AR(4) model may
be a suitable representation of the correlation structure in the
GPS positions. We estimated the AR model parameters through
Yule-Walker equations (Brockwell and Davis, 2002, p. 139).
The autocorrelation function of the fitted model, ACF(AR), now
approximates the original ACF. Again we have a linear system
with autocorrelated errors, as in the previous subsection, but
now the correlation originates from the nature of the closely
spaced GPS positions. To decorrelate the residuals, we may
apply the GLS method once more. In accordance with its
definition (11), the GLS transformation matrix W ∗ may be found
by the Cholesky decomposition of the covariance matrix of the
fitted AR model. The whole decorrelation procedure can easily
be made automated. We allow the maximum lag of the fitted
PACF to be 100 and this is also the limit for the automatically
estimated order p of the fitted AR(p) model. For later reference,
by double asterisk we will denote the twice-transformed linear
model

y∗∗ = X∗∗b+ ε
∗∗, (16)
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which was obtained from the once-transformed model (12) by
applying the linear transformation matrix W ∗. Finally, the right
panel of Fig. 2 shows that the residuals of the twice-transformed
model (16) are indeed approximately uncorrelated. In the rest
of the paper, when we speak about ‘decorrelated’ quantities, e.g.
decorrelated residuals or decorrelated solutions, we mean that
they were obtained from the twice-transformed model (16).

In Fig. 3 we show a comparison of the yearly GRACE B so-
lution with correlated residuals (in blue) and the solution with
decorrelated residuals (in red). Systematically, our results show
that the decorrelation based on the fitted AR model not only im-
proves the estimated error bars, and makes them more realistic,
but there is an appreciable improvement in the estimated har-
monic coefficients as well. The coefficients from the decorre-
lated model (16) are more accurate by a factor of 2–3 for degrees
higher than 20; there is a smaller but still visible improvement
for lower degrees.
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Figure 3: Degree difference amplitudes between estimated and reference har-
monic coefficients. Decorrelating the errors in GPS positions improved the so-
lution by a factor of 2–3. Also errors of estimated parameters (dashed lines) are
now more realistic. Data: GRACE B, year 2009.

In order to represent the correlation structure found in the er-
ror component of the observed GPS positions, we introduced a
fitted autoregressive process, whose order was estimated by us-
ing the sample partial autocorrelation function. In accordance
to Brockwell and Davis (2002, Ch. 1), we applied a general ap-
proach to time series analysis of this correlation structure. After
removing deterministic components to produce a stationary se-
ries of residuals, we looked for a hypothetical probability model
to represent the data, making use of various sample statistics in-
cluding the sample ACF and PACF. Then, an appropriately cho-
sen model compatible with the data may be used in a variety of
ways depending on the particular field of application, in our case
for decorrelating the residual time series so that we can draw cor-
rect statistical conclusions regarding the estimated coefficients.
The motivation for using the sample PACF lies in its ability to
simply identify the order of the underlying AR process. As one
is used to speak about a correlation length, which is easily found
by looking at the graph of sample ACF, in exactly the same way,
a quick visual inspection of the graph of sample PACF yields an
estimate of the order of an AR process. Figure 2(a) shows that
the ACF of an AR process decays exponentially compared to a
much simpler graph of the sample PACF, which rather quickly

goes to zero. The appropriateness of using the fitted AR pro-
cess to represent the correlations in GPS errors is demonstrated
by the fact that after decorrelating the residuals, not only the er-
ror bars become more realistic, but also the fitted geopotential
coefficients visibly improved.

2.5. Other implementation details

Our inversion method is implemented in Matlab (http://www.
mathworks.com/). All the computations were done on an ordi-
nary PC up to harmonic degree 120. For the calculation of the
partial derivatives matrix X we first used the modified forward
row method (Holmes and Featherstone, 2002), currently we use
a faster algorithm based on Hotine’s equations (Sebera et al.,
2013). A further speed up of the partial derivatives computa-
tion is achieved by writing this function in the C language and
compiling it as the Matlab MEX-file.

As already emphasized, after two linear transformations of
the regression model (10), we assume that the errors are ap-
proximately independent normally distributed and ordinary least
squares are used to solve the twice-transformed system (16). Due
to the huge number of observations, the system of normal equa-
tions has to be built up sequentially (Weigelt, 2007). For each
studied mission we tested using data blocks of variable size; the
obtained results were different for different number of observa-
tions comprised in a block. The block size depends on the max-
imum harmonic degree of the solution sought and is limited by
the available amount of the RAM memory (24 GB in our case).
The longer block size, the shorter computation time, but some-
times also worse results for longer blocks were obtained. So far,
we found the optimum block size for the 10-sec CHAMP orbits
to be approximately a half of the orbit period and two orbital pe-
riods for the 30-sec GRACE A/B orbits. Preliminary block size
for the 1-sec GOCE orbits is a tenth of an orbital period. Simi-
larly to the parameters of the differentiation filter (Sect. 2.2), the
block size turned out to be an important defining parameter of
our inversion method having direct influence on the accuracy of
the computed solutions.

One can ask why the data block size may have an influence
on the results of the inversion. If we had a linear regression prob-
lem, then cumulating the normal matrix using blocks would pro-
duce exactly the same solution, for any block length. However,
this ideal situation is disturbed by the application of the linear
transformation matrix. In principle, the order of this square ma-
trix should equal the number of rows of the design matrix; the
transformation is to be applied to both sides of the linear sys-
tem. Unfortunately, the number of rows (number of observation
points in the processed time period) is too large for the design
matrix to enter the RAM memory. For example, for a month of
10-sec positions, for a field of maximum degree 100, for three
components, we would need some 62 GB of the RAM memory.
Furthermore, GOCE and the forthcoming Swarm satellites have
1-sec orbits. This is the reason for the necessity of cumulating
the normal matrices by blocks, and thus introducing an error by
putting some parts of the transformation matrix equal to zero (i.e.
those parts of ideal large transformation matrix, which are out-
side the data block processed; this error is somewhat reduced by
the fact that the elements of the transformation matrix W above
the main diagonal are already equal to zero).

7

http://www.mathworks.com/
http://www.mathworks.com/


On the other hand, if the noise happens to be nonstation-
ary, then longer blocks may cause problems (Pavel Ditmar, priv.
comm.). The longer the block, the wider the frequency range un-
der consideration. Since the frequency-dependent data weighting
is applied that compensates the effect of double differentiation
(which amplifies noise proportionally to the frequency squared),
the weights assigned to low frequencies may become large, as
compared to weights assigned to high frequencies. This obser-
vation may explain the fact that we found different values of op-
timum block lengths for CHAMP and GRACE orbits (together
with different sampling time).

As already mentioned, we use the nongravitational accelera-
tions measured by the onboard accelerometers. Previous experi-
ence showed that the calibration of onboard accelerometer read-
outs was rather complicated, due to a very high correlation be-
tween the accelerometer biases and scale factors (Bezděk, 2010).
Therefore, we first fitted the accelerometer readouts to the sim-
ulated nongravitational signal, and then we used such calibrated
accelerometer observations aNG in the regression model (7). The
simulated nongravitational accelerations comprised drag, direct
solar radiation, albedo effect and Earth infrared radiation (for
details, please see Sect. 2.2 of Bezděk, 2010). To have a re-
alistic drag coefficient, for each satellite we estimated its value
using long-term change in orbital elements (months to years). To
obtain cross-sectional area in the direction of motion, we used
satellite macro-models. In case of CHAMP accelerometer data,
due to a hardware error we replaced the observations in the ac-
celerometer radial component with simulated nongravitational
accelerations. When accelerometer observations were used, we
expressed the linear model (7) in the accelerometer-fixed refer-
ence frame that is up to a few degrees close to the satellite local
reference frame, which was used otherwise (Sect. 3.2). This dis-
cussion applies to accelerometer observations of CHAMP and
GRACE A/B satellites, in computing preliminary results pertain-
ing to GOCE we made use of simulated nongravitational ac-
celerations. Based on the shape, dimensions and mass of the
GOCE satellite, we assess the nongravitational accelerations in
the cross-track and radial directions, we assume that the along-
track component is negligible due to the drag-free control sys-
tem. We tested the validity of this approach by using real GOCE
accelerometer data.

For processing the satellite orbital data, coordinate transfor-
mations and generation of simulated data, we used our own or-
bital propagator NUMINTSAT (Bezděk et al., 2009). For the
final version of this paper, we used: transformations between
ICRS and ITRS systems according to IERS Conventions 2010
(Petit et al., 2010), lunar and solar ephemerides JPL DE405
(ftp://ssd.jpl.nasa.gov/pub/), model of solid Earth tides (anelas-
tic Earth; McCarthy, 1996), model of ocean tides FES 2004
(Lyard et al., 2006), model of relativistic correction (McCarthy,
1996), model of neutral thermospheric density DTM-2000 (Bru-
insma et al., 2003). We used the kinematic orbits of CHAMP
and GRACE satellites given in IGS05 geodetic datum (Prange,
2010). As stated earlier, our solutions obtained by the inversion
of GPS positions of real satellites do not need any a priori grav-
ity field models; for generating simulated data and performing
other tests, we made use of various gravity field models, e.g.
EGM2008 (Pavlis et al., 2012), GGM03 (Tapley et al., 2007),

ITG-Grace2010s or EIGEN-6S. In processing the orbits of the
satellites CHAMP, GRACE A, GRACE B and GOCE, our grav-
ity field models presented in Sect. 3 were produced from the con-
sidered data sets individually, not jointly. This applies also to the
treatment of time-variable gravity field in Sect. 3.9, the individ-
ual solutions are each time based only on the data of the satellite
mission in question. We note that for correct estimates of the
coefficients C21, S21, a contribution of the solid Earth pole tide
(Petit et al., 2010, p. 93) proved to be substantial.

Every point of CHAMP and GRACE A/B kinematic posi-
tions (Sect. 3) was accompanied with an uncertainty estimate
(formal errors included in the orbit products). In some cases, e.g.
with CHAMP orbits in the years 2006 and 2009 when its onboard
GPS receiver had hardware problems, using the estimated un-
certainties somewhat improved the solution, in other cases, e.g.
with CHAMP positions in 2008, the solutions did not appear to
be better. We think that this is due to the application of the decor-
relation procedure (Sect. 2.4), which has a considerable effect on
the random component of GPS positions.

By their construction kinematic positions contain outliers
and data screening is a necessary processing step (e.g. Prange,
2010). Excluding outliers is indeed important to obtain mean-
ingful geopotential solutions; we do this by repeatedly fitting
the solution and by excluding gross outliers using the four-sigma
criterion. This criterion is applied to the residuals of the twice-
transformed model (16).

The number of other estimated parameters is very small, apart
from the geopotential coefficients we only included daily biases
(i.e., a constant term added to Eq. 7).

In Sect. 2.2 we mentioned that during the method devel-
opment a use was made of noise with different characteristics.
Based on the analysis of the observation residuals computed us-
ing the real GPS positions (Sect. 2.4), apart from using the white
noise, in the simulations we also modelled the noise as realiza-
tions of the low-order AR processes (e.g. the one, whose ACF is
shown in Fig. 2).

3. Results

In the preceding section, the main components of our inver-
sion procedure were described. We formulated the regression
model (7) which is linear in the unknown geopotential harmonic
coefficients. Problems of high-frequency noise amplification
and of autocorrelated errors in GPS positions were resolved by
two linear transformations of the initial regression system (10),
so that the residuals finally became approximately uncorrelated
normally distributed. In accordance with the generalized least
squares method (Sect. 2.3), the ordinary least squares may
be applied to the twice-transformed regression model (16).
By solving the normal equations we obtain estimates of the
harmonic coefficients accompanied by their full covariance
matrix.

Kinematic orbits — In the classical inversion methods,
observation equations are linearized with respect to the fitted
parameters and for estimating the geopotential coefficients an a
priori gravity field model is needed (e.g. Montenbruck and Gill,
2000, Ch. 7–8). In this way, the geopotential coefficients are
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obtained by adding corrections to their a priori values, and the
resulting geopotential model may be somewhat biased towards
the a priori field. Also the GPS-SST positions themselves
may be influenced by force models involved in dynamic or
reduced-dynamic orbit determination. This is the reason why in
the acceleration approach it is advisable to derive accelerations
from kinematic orbits, where the position points are determined
purely geometrically from GPS measurements without any
information about forces that influence the satellite motion (Dit-
mar et al., 2006; Sluijs, 2002; Reubelt et al., 2003, 2006; Švehla
and Rothacher, 2005). (We note here that a priori gravity field
information is implicitly used through the GPS ephemeris, but
this will have a minor impact due to the high altitude of the GPS
satellites and their global distribution.) In our computations we
used the kinematic orbits of CHAMP and GRACE A/B satellites
from AIUB (Jäggi et al., 2009, 2011b), and the kinematic orbits
of GOCE, which are one of the Level-2 products (EGG-C, 2010;
Bock et al., 2011).

3.1. Gravity field from one day of real data

There is a dramatic difference between the global (satel-
lite) gravity field models from the era before CHAMP, and with
CHAMP, GRACE and GOCE. The older models not only had
less precise data (electronic, photographic, a first generation
laser), but also were not continuous in time and space like the
GPS high-low SST data available now. The inversion from the
old observations to the gravity field coefficients required data
gathered from many satellites and long observation times to en-
sure the stability of the inversion. Moreover, the functional mod-
els were solely nonlinear, which added to the complexity of the
inversion (e.g., reasonable starting values for the fitted geopoten-
tial coefficients). Today, we can create a test long-wavelength
gravity field model with CHAMP or GRACE or GOCE from ob-
servations covering one day.

In Fig. 4, for the three missions studied we show the results of
an inversion of GPS positions, which were acquired during only
one day. From these precise GPS positions observed at constant
time step of 1, 10 or 30 seconds, we obtained decent gravity field
models complete to degree and order 15. By this example we em-
phasize the novelty of the GPS-SST observational data type. To
compute the daily gravity field models shown in Fig. 4, we used
the linear regression model (7) and solved it using the ordinary
least squares. The tiny orbital perturbations caused by higher
degree and order terms of the Earth gravity field are sufficient
to yield all the sought 255 geopotential coefficients in one step
and without any a priori gravity field model. Only Newton’s law,
models of other perturbing forces (Eq. 6) and 3D orbital points
measured accurately and densely enough in space and time are
needed and used.

In addition, the bottom two panels of Fig. 4 show the corre-
sponding daily ground track; they will be very helpful in the next
subsection. Presently there is a discussion about the theoretical
and practical limit on what maximum degree and maximum or-
der solution may be obtained from such near polar circular orbits
(e.g. Weigelt et al., 2013b; Klokočnı́k et al., 2008).

Figure 4: Map of geoid heights computed from EIGEN-6S model (as a refer-
ence), then similar maps of our daily solutions, all computed to maximum degree
15. Bottom panels: the corresponding ground tracks for the orbits used in our
one-day inversions. (Ground tracks of CHAMP are not shown, they are similar
to those of GRACE A.)

3.2. Combination of along-track, cross-track and radial solu-
tions

Satellite local reference frame — Linear regression model (7)
is a pointwise vector equation, therefore it is possible to project
it into a suitable reference frame. It is well known that GPS
positions have different uncertainty in the horizontal and vertical
directions (e.g. Hofmann-Wellenhof et al., 2008). Taking into
account that all the satellites in question are attitude stabilized
with respect to their velocity vector and Earth (to within a few
degrees), after having done the differentiation in the inertial ref-
erence frame, we transform the regression model to the satellite
local reference frame (LRF). The three LRF components are
defined as along-track (A-T; projected to the velocity direction),
cross-track (C-T; direction of angular momentum) and radial
(RAD; almost radial, it completes the right-handed system).

Combination solution using normal matrices — In the
rest of the paper we will speak about OLS solutions of the
twice-transformed model (16), but we drop the double asterisk.
Assuming that the error covariance matrix is a scaled identity
matrix, Cov(ε)=σ2I, the solution vector b̂ and its covariance
matrix Cov(b̂) may be written

b̂ = N−1XT y , Cov(b̂) = σ̂
2N−1 , (17)

N = XT X , σ̂
2 =

(y− ŷ)T (y− ŷ)
r− s

, (18)

where N is the normal matrix, σ̂2 estimated error variance, r
number of observations, s number of estimated parameters. We
obtain three solution sets (17), (18), one for each LRF compo-
nent; supposing they are independent, the combined solution b̂c
is given by

b̂c = ∑
i

Rib̂i , Cov(b̂c) = N−1
c , (19)
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Ri = N−1
c σ̂

−2
i Ni , Nc = ∑

i
σ̂
−2
i Ni , (20)

where the index i={‘a-t’,‘c-t’,‘rad’} denotes the individual
LRF components. Unless stated otherwise, all the presented
satellite solutions are the combined ones (19). As regards
the assumption about the independence of the individual LRF
component solutions, we suppose that the sensitivity to geopo-
tential harmonic coefficients is different for each LRF direction,
and as such these directions provide complementary information.

Contribution graphs — In a direct analogy to the weighted
mean, where each contributing point is weighted by its inverse
variance normalized by the sum of the inverse variances, the
weighting factors Ri in the combined solution (19) are matrix
versions of the normalized inverse variances. If these matrices
Ri are diagonally dominant, which is generally the case for
our solutions (Sect. 3.7), then visualizing elements on their
main diagonal has an interesting and informative interpretation
(cf. Yi and Rummel, 2011). The kth diagonal element of Ri
is the relative weight with which the kth component of the
individual solution vector b̂i contributes to the kth component of
the combined solution b̂c.
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Figure 5: Contribution graphs for the individual LRF solutions. Bottom right
panel: standard errors of the combined solution. Data: GRACE B, 2009.

In Fig. 5 these relative contributions are depicted in percent-
age terms for a yearly GRACE B solution. In the upper left panel,
relative contribution of the along-track solution is maximal for
the zonal and near-zonal harmonic coefficients. This can easily
be understood by looking at the satellite ground tracks in Fig. 4.
For polar orbits, the A-T direction is oriented north-south, where
most signal energy from zonal harmonics is located. On the other
hand, the cross-track component is directed east-west relative to
Earth, thus the C-T component is most sensitive and contributes
the most to the sectorial harmonics, as is shown in the upper
right panel of Fig. 5. In the title of the contribution graphs also
the mean relative contribution of each component is given. The
quoted percentages are typical for our solutions, on average the
A-T solution contributes by 35–50 %, the C-T by 30–45 %, the
RAD by 15–20 %. The formal standard errors of the obtained

harmonic coefficients are in the lower right panel of Fig. 5.
As mentioned, all the presented solutions were acquired by

combining the separate LRF solutions (if not stated otherwise).
We also tried to solve the regression model in other reference
frames (celestial, Earth-fixed), but systematically the best results
were obtained with Newton’s law expressed in LRF. A possible
explanation of this fact might be the following. Each of the three
individual LRF solutions has not only its own formal covariance
matrix N−1

i , but also its own standard error of the fit σ̂i. Sys-
tematically these errors are different for the three LRF solutions,
thus every solution b̂i enters the combined solution b̂c weighted
individually by its corresponding factor Ri, Eqs. (19)–(20). Also
the information contained in the individual LRF solutions, as
graphed in Fig. 5, is different and complementary. When we
solved the regression system (7) in the celestial reference frame,
the individual sigmas σ̂i of the three solutions in the correspond-
ing Cartesian components were similar to each other, as well as
the mean contribution of the three solutions. We see the explana-
tion of why the LRF provides better solutions in the fact that the
LRF is better suited for modelling the properties of the random
component in the observed GPS positions (cf. Baur et al., 2012).

3.3. Along-track solution vs. combined solution

A widely used method of estimating the geopotential coeffi-
cients from GPS kinematic positions is the so-called energy bal-
ance approach (e.g. Földváry et al., 2005; Sneeuw et al., 2005;
Weigelt et al., 2009). There the information from GPS positions
is projected solely to the satellite velocity direction; compared to
the three-dimensional character of the acceleration approach or
the celestial mechanics approach (Beutler et al., 2010a,b), meth-
ods based on energy balance are expected to produce geopoten-
tial solutions worse by a factor of

√
3 (Baur et al., 2012; Ditmar

and Sluijs, 2004).
In our method, we can easily compare the individual A-T

only solution with the combined solution. It is clear from the
contribution graphs in Fig. 5 that the combined solution benefits
substantially from all the three LRF solutions. In Fig. 6 the fac-
tor with which the yearly combined solution outperforms the A-T
solution varies between 1.2–2.0, comprising the quoted value of√

3. Even if our A-T solution is not equivalent to an energy bal-
ance solution, this result confirms that it is advantageous to ex-
ploit the 3-D orbital information compared to its 1-D projection.

Due to the GOCE orbital inclination, polar gaps arise with
an angle of 6.7◦, which are uncovered by satellite ground tracks
and which bring about problems in the determination of the near
zonal harmonic coefficients (e.g. Baur et al., 2012; Sneeuw and
van Gelderen, 1997). In Fig. 7 we show that for the GOCE so-
lution to degree 75 indeed the A-T only solution exhibits consid-
erably worse near-zonal coefficients (left panel), but in the com-
bined solution this unwanted effect is significantly reduced (right
panel). This polar gap problem is negligible in the GRACE and
CHAMP solutions, because their orbits are close enough to the
poles.

3.4. Degree difference amplitudes

In Figs. 6 and 7, to show the quality of our GPS-SST solu-
tions we used their difference with respect to geopotential models
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Figure 6: Degree difference amplitudes of the estimated harmonic coefficients
related to reference field. Data: GRACE B, 2009.

   S
nm

     Order m      C
nm

ASU−GOCE: A−T solution

D
e
g
re

e
 n

 

 

−60 −30 0 30 60

0

15

30

45

60

75
log

−12

−11

−10

−9

−8

   S
nm

     Order m      C
nm

ASU−GOCE: COMB solution

D
e
g
re

e
 n

 

 

−60 −30 0 30 60

0

15

30

45

60

75
log

−12

−11

−10

−9

−8

Figure 7: Two-dimensional difference spectrum between estimated harmonic
coefficients and EGM2008 model. Data: GOCE, Nov–Dec 2009.

containing a contribution from GRACE KBR data (e.g. EIGEN-
6S, EGM2008). As mentioned in the introduction, currently the
GRACE KBR based gravity fields are the best static geopotential
models available for harmonic degrees up to 100–150 (Pail et al.,
2011b). Thus, we assume that individual GRACE KBR geopo-
tential coefficients up to degree and order 100 are more accurate
with a factor of 10–100 compared to those from our GPS-SST
solutions. This is the reason for the capability of GRACE KBR
solutions to be used in the sense of a measurement standard
(etalon), as a ‘truth’, for assessing the quality of the GPS-SST
geopotential solutions. Degree difference amplitudes, used in
figures throughout this paper, enable comparison of two geopo-
tential models as a function of degree n (Prange, 2010) and are
defined as

DDAn = R

√
n

∑
m=0

(∆C2
nm +∆S2

nm) , (21)

where ∆Cnm, ∆Snm are the differences in the coefficients of the
two models (cf. Wagner and McAdoo, 2012). In analogy to
spherical approximation used in physical geodesy, we added the
Earth radius R to the definition of degree difference amplitudes
to express them in terms of geoid height (and thus in metres).
For a given GPS-SST model and various reference fields, the
degree difference amplitudes are virtually the same, provided
the longwave part of the reference model is based on GRACE
KBR data. As a reference model we preferred to use EIGEN-6S,
because for the lowest degree coefficients this model provides
time variations for the period studied, which are not negligible
in the difference graphs. Our multi-year solutions combine in-

formation from all the yearly solutions included, so in the de-
gree difference amplitudes we used the time-dependent values
of EIGEN-6S at the mid-epoch of the multi-year solution (e.g.
2006.5 for our CHAMP or GRACE 2003–2009 solutions). To
compute the EIGEN-6S harmonic coefficients for use in degree
difference amplitude graphs, we used the full time-related infor-
mation (mean, trend, annual variation) as given in the model data
file.

3.5. Gravity field model from orbit of CHAMP in 2003

As mentioned in the introduction, with very long time series
of precise GPS positions, accompanied by onboard accelerom-
eter measurements, CHAMP opened a new era in gravity field
modelling, not only because of higher accuracy of new global
geopotential models, but also as a stimulus for developing new
computational methods. This is also the reason why the ‘Ta-
ble of models’ of the ICGEM website provides quite a number
of solutions based on CHAMP data spanning the first years of
the mission. Fig. 8 shows some of these models. TUM-2S is
an energy balance solution based on two years (2002–2004) of
CHAMP GPS and accelerometer data (Wermuth et al., 2004);
AIUB-CHAMP01S is a one-year gravity field model (2002–
2003) using the celestial mechanics approach (Prange et al.,
2009); ITG Champ01S is a one year solution (03/2002-03/2003)
based on the formulation of Newton’s equation as a boundary
value problem (Mayer-Gürr et al., 2005); EIGEN-CHAMP03S
is a CHAMP-only gravity field model derived from GPS and ac-
celerometer data covering 2.8 years (2000–2003) with regular-
ization starting at degree 60 (Reigber et al., 2005a). The regular-
ization is the cause for the EIGEN-CHAMP03S curve to ‘follow’
the signal of the reference model beyond degree 60. The very
satisfactory behaviour of our yearly solution ASU-CHAMP-03
is certainly due to the excellent kinematic orbits computed at
AIUB, whose quality has been steadily improving (Jäggi et al.,
2009; Bock et al., 2011; Prange et al., 2010). We used the
CHAMP kinematic orbits spanning the year 2003. As already
mentioned, we do not use any regularization scheme in our solu-
tions. (We note here that truncating the gravity field estimation
at a certain maximum degree is also a sort of regularization.)
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Figure 8: Degree difference amplitudes of several geopotential models related
to reference field. Data: CHAMP, 2000–2003, period different for the individual
models.
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3.6. Seven-year solutions from CHAMP and GRACE orbits

By Eqs. (19) and (20) we defined the combination of indi-
vidual LRF solutions using the weighting matrices Ri. In the
same way we can combine the yearly solutions of CHAMP
and GRACE A/B satellites to obtain mean seven-year geopo-
tential models separately for each satellite, which are shown
in Fig. 9. For degrees greater than 20, better accuracy of the
long-term static CHAMP solution is caused by the lower al-
titude of CHAMP satellite (300–420 km) compared to that of
GRACE A/B satellites (440–500 km) over the studied period.
Both the GRACE solutions are of similar accuracy over all har-
monic degrees.
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Figure 9: Degree difference amplitudes of our seven-year static gravity field
models related to reference field. Data: GPS-SST, 2003–2009.

In Table 1 we give relative contributions of individual yearly
solutions into their seven-year combined solutions. Considering
the attenuation with altitude of higher degree spherical harmonic
terms proportional to r−n in Eq. (1), one may expect that on av-
erage the last years of each mission would contribute more to the
combined solution, because of the gradually decreasing satellite
altitude. This is the case for the GRACE A/B satellites, how-
ever there are apparently other factors which modify this general
rule. As for CHAMP, since October 2008 due to serious onboard
hardware problems the accuracy of its GPS positioning became
considerably reduced (Prange, 2010), but owing to the satellite’s
low altitude the average contribution of the 2009 CHAMP solu-
tion to the combined seven-year model is relatively high.

Table 1: Average relative contribution of yearly solutions into the respective com-
bined 7-year solution for each satellite (percentage).

Year CHAMP GRACE A GRACE B
2003 6.3 10.8 12.9
2004 7.1 12.8 13.7
2005 16.0 10.2 6.2
2006 16.0 12.3 11.5
2007 18.2 16.1 18.6
2008 21.5 18.7 16.7
2009 14.9 19.1 20.4

In Fig. 10 we compare our long-term CHAMP-only solution
with those of other research groups (provided at the ICGEM
website). EIGEN-CHAMP05S is a gravity field model made

at GFZ from six years of CHAMP GPS-SST and accelerome-
ter data (10/2002–09/2008), Kaula regularization starts at degree
70 (Flechtner et al., 2010); AIUB-CHAMP03S is derived from
eight years of GPS tracking data (2002–2009) using the celestial
mechanics approach, no regularisation was applied (Jäggi et al.,
2010). Especially on account of the decorrelation of the errors in
GPS positions (Sect. 2.4), our model ASU-CHAMP-0309 per-
forms almost as well as the AIUB-CHAMP03S model, bellow
degree 20 both models are of comparable accuracy (note, how-
ever, that the AIUB-CHAMP03S model is based on one more
year of data than our model). Besides our seven-year solution
ASU-CHAMP-0309, we show also a six-year solution ASU-
CHAMP-0308, based on GPS positions from the years 2003–
2008; this solution performs better than EIGEN-CHAMP05S ex-
cept for a few lowest degrees.
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Figure 10: Degree difference amplitudes of four long-term CHAMP-only solu-
tions.

3.7. Covariance matrices of GPS-SST solutions

In the upper panel of Fig. 11 we show the geographic distribu-
tion of the projected covariance matrix of one obtained solution
in terms of geoid heights. A predominantly latitude-dependent
(zonal) pattern, symmetric with respect to the equator, implies
that the covariance matrix is approximately block-diagonal, if or-
ganized per spherical-harmonic order (Pavlis et al., 2012). This
is due to the global, homogeneous sampling of GPS-SST data, as
with the GRACE KBR models (Tapley et al., 2005). In the bot-
tom panel of Fig. 11, among the lowest degree coefficients we see
only moderate correlations (less than 0.54 in abs. value) for cer-
tain coefficients of the same order and same parity. We obtained
similar results for all our yearly and multi-year solutions.

From Fig. 9 showing the agreement of our unconstrained
long-term GPS-SST solutions with a KBR GRACE solution we
can deduce a rule of thumb for ‘reasonable’ values of our fit-
ted GPS-SST fields. Limiting the degree difference to be one
tenth of that at the ‘crossing point’ with the reference field sig-
nal, we obtain the maximum degree 60 for the GRACE A/B and
75 for the CHAMP seven-year solutions. In such degree-limited
solutions, 99.9 percent of correlations are less than 0.1 (in abso-
lute value), all correlations are below 0.73 for the GRACE A/B
solutions and below 0.61 for the CHAMP solution. Only the
highest degree fitted coefficients have large correlations among
themselves, but this is expected as they are included in the fit
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Figure 11: Geoid height error predicted by the full covariance matrix as a func-
tion of geographic location for the seven-year solution ASU-CHAMP-0309 up
to degree 75; correlation matrix of the same solution up to degree 9, order of
coefficients: C20, C21, S21, C22, S22, C30, etc.

in order to reduce the truncation error and due to the degree-
dependent altitude attenuation there is not enough information
in the observations for them to be clearly separated. We rec-
ommend to exclude these highest degree estimated coefficients
and their covariance information from further analysis; follow-
ing this rule, the geographical map in the upper panel of Fig. 11
was computed from the seven-year solution ASU-CHAMP-0309
limited by maximum degree 75. Generally speaking, the covari-
ance matrices of our solutions are diagonally dominant. This is in
accordance with our experience that multi-year combination so-
lutions (Sect. 3.6) are not much different when combining them
by means of the full normal matrices or using only the elements
on their main diagonals.

3.8. First results for GOCE

As mentioned in the introduction, in the GOCE mission the
GPS-SST data constitute an important source of information
complementary to the space gradiometer observations; the GPS
positions are used to determine the long-wavelength part of the
gravity field. In Fig. 12 we present our first attempts to com-
pute the geopotential solution based on GPS-SST data from the
first 2-month observation cycle. In the figure we also show
one of the three official ESA solutions, so-called time-wise so-
lution, whose aim is to be a pure GOCE-only solution inde-
pendent of any prior gravity field model; its low-degree part is
based on the energy integral method using the kinematic orbits
(GO CONS GCF 2 TIM R1; Pail et al., 2011a). In the shown
longwave part of this solution, Kaula regularization was applied
to all zonal and selected near-zonal coefficients. Our solution
‘ASU-GOCE-2months’ display only slight deficiencies in the
zonals due to the polar gap; this is because we selected not so
high value of the maximum harmonic degree for the estimated
coefficients (N=75), and also owing to the combined informa-
tion from all three LRF components (cf. Fig. 7). In the graphs
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Figure 12: Degree difference amplitudes (upper panel) and degree medians
(lower panel) of GOCE solutions. Data: Nov-Dec 2009.

of the ESA time-wise solution, SGG seems to be the dominant
contributor in the combined solution from degree 30 onwards.

3.9. Time-variable gravity from GPS orbits

First attempts at revealing temporal variations in the CHAMP
gravity fields (Sneeuw et al., 2005; Reigber et al., 2005a) were
confronted with a large noise and have led to the conclusion that
seasonal variations in only the lowest 2–4 harmonic degrees can
possibly be recovered (Weigelt et al., 2009; Wang et al., 2012).
Based on eight years of CHAMP GPS data, Prange et al. (2011)
showed that it is possible to determine temporal gravity vari-
ations up to degree 10 by averaging and filtering the individ-
ual monthly solutions. Recently, Weigelt et al. (2013a) used a
Kalman filtering to analyze non-stationary variations in the long-
term trends and annual amplitudes of mass change over Green-
land derived from GPS-SST data of CHAMP with a spatial reso-
lution corresponding to degree and order 10.

We used CHAMP and GRACE A/B kinematic positions, for
each satellite we fitted monthly solutions up to degree 20 within
the period 2003–2009. To reduce the error due to the truncation
of the geopotential harmonic series in Eq. (1), for each satellite
before fitting the harmonic coefficients we subtracted the gravita-
tional acceleration computed from its respective seven-year static
solution, in case of GRACE A/B for degrees 21–80, in case of
CHAMP for degrees 21–100 (Sect. 3.6). Thus the individual re-
sults on temporal variations are based solely on data from the
satellite in question. Then we fitted a linear model consisting
of the mean, trend and annual sinusoidal variations to the time

13



Figure 13: Average seasonal geopotential variation computed from: (a) GRACE KBR data (CSR RL04); (b)–(d) GPS positions of CHAMP, GRACE A/B satellites. In
each map, average October variation in terms of geoid height is shown, maximum fitted harmonic degree is 10.

series of individual harmonic coefficients up to degree 10 (e.g.
Wagner and McAdoo, 2004). In Fig. 13 we show geoid height
maps of the obtained mean annual variations in panels (b)–(d).
For comparison also a map for the annual change from GRACE
KBR monthly solutions, computed in the same way, is given in
panel (a). For the maps we chose the month of October when the
gravity field seasonal cycle attains its extreme values. The aver-
aged annual signal in all the four panels displays clearly the con-
tinental areas with most important hydrological variations. These
include heavy-rainfall regions on both sides of the equator and a
moderate seasonal signal in Eurasia and northern North America
(Wahr, 2007). The GPS-SST average seasonal solutions (b)–(d)
are noisier compared to the KBR field in panel (a); this is clearly
visible over the oceans, where the annual variations are much
smaller compared to those on land.

4. Conclusions and outlook

Recent discussions about the capability of using GPS-only
geopotential models for monitoring temporal variations of Earth
gravity field are motivated by a possible gap between GRACE
and its follow-on mission (Wang et al., 2012; Ditmar et al.,
2009; Weigelt et al., 2013a). In this paper we presented an
inversion method to compute the geopotential harmonic coef-
ficients from GPS positions using the acceleration approach.
We obtained static gravity field models up to degree 80–100
from high quality kinematic positions of low flying satellites
GRACE A/B, CHAMP and GOCE equipped with GPS receivers.
We demonstrated that the presented method yields long-term
static CHAMP-only solution of similar or better quality as other
published solutions. We showed that precise GPS positions of
a single satellite may provide a realistic geographic pattern of
average seasonal hydrology of continents.

The obtained results are encouraging and will serve as a
basis for studying related problems, such as further refine-
ment of the defining parameters of the presented method, espe-
cially for GOCE-like orbits; possibility of obtaining meaningful
‘non-average’ monthly solutions to provide more detailed time-
variable gravity; combination of the GPS-SST solutions with so-
lutions from other techniques (namely GOCE SGG).
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Jäggi, A., Prange, L., Hugentobler, U. Impact of covariance information of kine-
matic positions on orbit reconstruction and gravity field recovery. Advances
in Space Research 47, 1472–1479, 2011c.
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Höck, E., Reguzzoni, M., Brockmann, J. M., Abrikosov, O., Veicherts, M.,
Fecher, T., Mayrhofer, R., Krasbutter, I., Sansò, F., Tscherning, C. C. First
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Prange, L., Jäggi, A., Beutler, G., Dach, R., Mervart, L. Gravity Field Deter-
mination at the AIUB - The Celestial Mechanics Approach. In Sideris, M
G, editor, OBSERVING OUR CHANGING EARTH, volume 133 of Interna-
tional Association of Geodesy Symposia, pages 353–362. Int Assoc Geodesy;
Int Union Geodesy & Geophys, 2009. General Assembly of the International-
Association-of-Geodesy/24th General Assembly of the International-Union-
of-Geodesy-and-Geophysics, Perugia, ITALY, JUL 02-13, 2007.
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Reigber, C., Lühr, H., Schwintzer, P. First CHAMP Mission Results for Gravity,
Magnetic and Atmospheric Studies. Springer, 2003b.
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tational field modelling with Hotine’s equations. Journal of Geodesy 87, 223–
238, 2013.

Siemes, C. Digital Filtering Algorithms for Decorrelation within Large Least
Squares Problems. Ph.D. thesis, University of Bonn, 2008.

Sluijs, A. A. v. E. v. d. Inversion of satellite accelerations into the Earth’s
gravity field model. Master’s thesis, Delft University of Technol-
ogy, 2002. http://www.lr.tudelft.nl/fileadmin/Faculteit/LR/Organisatie/
Afdelingen en Leerstoelen/Afdeling RS/Physical and Space Geodesy/
Publications/MSc theses/doc/thesis.pdf [Online; accessed 29-Oct-2013].

Sneeuw, N., Gerlach, C., Foldvary, L., Gruber, T., Peters, T., Rummel, R.,
Svehla, D. One year of time-variable CHAMP-only gravity field models
using kinematic orbits. In Sanso, F, editor, WINDOW ON THE FUTURE
OF GEODESY, volume 128 of International Association of Geodesy Sym-
posia, pages 288–293. Int Assoc Geodesy, 2005. General Assembly of
the International-Association-of-Geodesy, Sapporo, JAPAN, JUN 30-JUL 11,
2003.

Sneeuw, N., van Gelderen, M. The polar gap. Lecture Notes in Earth Sciences,
Berlin Springer Verlag 65, 559–568, 1997.

Tapley, B., Ries, J., Bettadpur, S., Chambers, D., Cheng, M., Condi, F., Gunter,
B., Kang, Z., Nagel, P., Pastor, R., Pekker, T., Poole, S., Wang, F. GGM02
An improved Earth gravity field model from GRACE. Journal of Geodesy 79,
467–478, 2005.

Tapley, B., Ries, J., Bettadpur, S., Chambers, D., Cheng, M., Condi, F., Poole, S.
The GGM03 Mean Earth Gravity Model from GRACE. AGU Fall Meeting
Abstracts page A3, 2007.

Tapley, B. D., Bettadpur, S., Watkins, M., Reigber, C. The gravity recovery and
climate experiment: Mission overview and early results. Geophys. Res. Lett.
31, L09607, 2004.
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Švehla, D., Rothacher, M. Kinematic positioning of LEO and GPS satellites and

IGS stations on the ground. Advances in Space Research 36, 376–381, 2005.
Wagner, C. A., McAdoo, D. C. Time variations in the GRACE gravity field:

Applications to global hydrologic mass flux. In Proceedings of the Joint
CHAMP/GRACE Science Meeting. 2004.

Wagner, C. A., McAdoo, D. C. Error calibration of geopotential harmonics in
recent and past gravitational fields. Journal of Geodesy 86, 99–108, 2012.

Wahr, J. Time variable gravity from satellites. In T. Herring, editor, Treatise on
Geophysics, vol. 3, Geodesy, pages 213–237. Elsevier, 2007.

Wang, X., Gerlach, C., Rummel, R. Time-variable gravity field from satellite
constellations using the energy integral. Geophysical Journal International
190, 1507–1525, 2012.

Weigelt, M. Global and local gravity field recovery from satellite-to-satellite
tracking. Ph.D. thesis, University of Calgary, 2007.

Weigelt, M., Baur, O., Reubelt, T., Sneeuw, N., Roth, M. Long Wavelength Grav-
ity Field Determination from GOCE Using the Acceleration Approach. In 4th
International GOCE User Workshop, volume 696 of ESA Special Publication.
2011.
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