Swarm accelerometer data: temperature dependence and GPS-based calibration

Aleš Bezděk^{1*}, Josef Sebera^{1,2}, Jaroslav Klokočník¹, Jan Kostelecký³

¹Astronomical Institute, Academy of Sciences of the Czech Republic (*bezdek@asu.cas.cz) ²ESA/ESRIN Frascati, Italy; ³Research Institute of Geodesy, Topography and Cartography, Czech Republic

Swarm A/C: deep orbit resonance

Passage through 46:3 resonance in Feb 2016

Upper figures: typical ground tracks in a month Lower figures: sparse coverage due to deep orbital resonance (Feb 2016)

- Next deep orbital resonances:
- 77:5 at 422.7 km in 2020
- 31:2 at 393.2 km well beyond 2020

Linear temperature correction (LTC)

SIM-validation of accelerometer (ACC) data Validation by means of simulated NG signal

UNCAL = $\mathbf{B} + \mathbf{S} \times \mathbf{SIM} + \mathbf{Q} \times \mathbf{T}(\mathbf{t} + \mathbf{F}) + \mathbf{G} \times (\mathbf{t} - \mathbf{t}_0) + \varepsilon$

 $CAL = [UNCAL - B - Q \times T(t+F) - G \times (t-t_0)]/S$

- UNCAL..uncalibrated ACC data; B..bias; S..scale factor; SIM..modelled NG signal;
- Q..temperature factor; T(t+F)..temperature with phase shift F; t..time; G×(t-t₀)..trend; ε..noise
- CAL calibrated ACC signal
- Linear temperature correction: LTC=Q×T(t+F)
- Local reference frame: along-track (A-T); cross-track (C-T); radial (RAD) directions

- <u>SIM-validated arcs</u> (blocks) are defined: good agreement of (un)corrected ACC waveform with physical nongravitational (NG) signal.
- Reasons for an arc not to be SIM-validated:
 (1) arcs with substantial ACC anomalies (steps, jumps, spikes, ...)
 (2) arcs with important temperature dependence (Swarm A/B, Swarm C less)

Effect of LTC on A-T component

- ACC data with no temperature correction do not correspond well to physical NG signal.
- Correlation of temperature corrected ACC data with NG is improved substantially.
- Increase in #SIM-validated blocks by LTC.

Anomalous periods in ACC data

- ESA: problematic 3-week period in Oct–Nov 2014: large number of steps, impossible to correct reliably; the net effect close zero.
- Originally, this issue concerned A-T data of Swarm C covering period Jun-Dec 2014
- Application of LTC to ACC data of Swarm A
 → both Swarm A and Swarm C experienced
 similar problems in the same periods!
- Taking 1.5 yr of ACC data for Swarm A/C
 → correlation between the anomalous periods
 and the minima in AC component of the signal
 measured by ACC instrument.

Swarm C – LTC off:

GPS-based calibration of ACC data

Acceleration approach: ASU version

• GPS positions **r** with constant time step \rightarrow numerical second derivative: d²**r**/dt² \approx **a**^(GPS) Newton's second law: d²**r**/dt² = **a**_{geop} + other acc. **a**_{geop}(**r**) = \sum GC× ∇ SSH(r, θ , ϕ) ... geopotential Assume the geopotential is known and define GPS-based NG accelerations

• $\mathbf{a}_{NG}^{(GPS)} = \mathbf{a}^{(GPS)} - \mathbf{a}^{(GPS)}$	$(\mathbf{a}_{geop} + \mathbf{a}_{LS} + \mathbf{a}_{TID} + \mathbf{a}_{REL})$
---	---

where $\boldsymbol{a}_{\text{LS}}$, $\boldsymbol{a}_{\text{TID}}$, $\boldsymbol{a}_{\text{REL}}$... lunisolar, tides, relativity

• $\mathbf{a}_{NG}^{(GPS)} = \mathbf{B} + \mathbf{S}_{ACC}^{(UNCAL)} + \boldsymbol{\epsilon}$ (*)

Calibration parameters B/S for ACC are obtained by solving linear system (*).

Problem: Numerical derivative amplifies noise in GPS positions. Solution: Generalized least squares (GLS) \rightarrow linear transformation of (*)

Simulated data

GPS noise 0.01 mm (unrealistic):

• GPS noise 3 cm (≈realistic):

Zooming to see the ACC/NG signal:

Real Swarm data

GPS-based NG acceleration:

Zooming to see the ACC/NG signal:

Acknowledgments

We thank ESA for Swarm data, IfG and TUD for kinematic orbits, ICGEM/GFZ for geopotential models. This work was supported by projects LG15003, GA13-36843S and RVO: 67985815.