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FOTEL 4 is a FORTRAN code for separate or simultaneous solving of light curves,
radial-velocity curves, visual (interferometric) measurements and eclipse timing of
binary and/or triple stellar systems. The underlying physical assumptions, numerical
methods and practical use of the code are described in this document.
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1 Introduction

The synthesis of the phase-dependent light and spec-
tral changes of eclipsing binaries includes many phys-
ically interesting problems, the solution of which re-
quires much larger effort and more computations than
models of simple plane-parallel atmospheres. How-
ever, to be able to compare results of such theories
with real observations, it is necessary to know basic
physical parameters of the observed binary. These
can be estimated using a program based on a rather
simple analytical model. The need of these param-
eters, as well as practical needs of interpretations of
photometric observations led to the development of
FORTRAN code named FOTEL for solving of photo-
metric elements. This code is a supplement to the
set of programs (e.g. the SPEL for the solution of
the spectroscopic elements, but also the programs for
searching for period etc. and recently also KOREL
for spectra disentangling1) developed at the Ondřejov
observatory for data processing.

Some of the orbital elements and physical or geo-
metrical parameters of a binary system are well de-
fined by light curves (e.g. inclination i), while others
can also be determined from radial velocities (RV-
hereafter; some of the parameters are defined much
better by RVs – e.g. the eccentricity e or the mass
ratio q). It is therefore convenient to solve simulta-
neously for photometric and spectroscopic elements
(Wilson 1979). For this reason FOTEL enables the
separate or simultaneous solution of light- and RV-
curves of binary stars. In this sense, FOTEL is a
generalization of SPEL and it involves and extends
its possibilities. SPEL can be faster in cases of sim-
ple binary orbits, it can also be used to estimate a
zero order approximation for systems with some sec-
ular changes of orbital elements, if the observational
data are divided e.g. by seasons. However, owing to
its greater versatility, FOTEL can provide a direct fit
more easily in such complicated cases.

The version FOTEL 3 of the code developed around
1990 can handle eccentric orbits of binaries includ-
ing a possible third component (taking into account
the corresponding light-time effect). Later versions
can include into the solution also radial velocities of
the third component. The solution of light-curves is
based on an approximation of three-axial ellipsoids
which proved to be viable even in the case of nearly
contact binaries.2 FOTEL 3 includes also a prelim-

1The code KOREL uses the technique of Fourier decom-
position developed from the method of radial-velocity deter-
mination by cross-correlation and the experience from deter-
mination of orbital elements in FOTEL (cf. Hadrava 2004:
“KOREL – User’s guide” in this volume).

2Kallrath and Milone (1999) give a comprehensive review
of different codes for light-curve solution and the correspond-
ing physics. Several codes are based on assumption of Roche
geometry. The difference between the Roche geometry and its

inary version enabling to deal with the generalized
Roche geometry of components and physics of their
atmospheres as described by Hadrava (1987b, 1988).
However, this part of the code is not still reliably de-
bugged and for this reason its description is skipped
here. The simplicity of the three-axial aproximation
allows to fit a large amount of individual data-points.
FOTEL enables to find and eliminate some system-
atic differences between sets of observational data
from different instruments and methods of data re-
duction. This is why it has been requested by some
colleagues to give the code and its description at pub-
lic disposal even in the unfinished version.

The present version FOTEL 4 enriches the possi-
bilities of FOTEL 3 by simultaneous solution of vi-
sual orbits of the close pair and timing of light-curve
minima caused by the eclipses (in addition to the so-
lution of complete light-curves and RV-curves). The
first generalisation is done because of the progress of
instrumentation, especially in interferometry, which
enabled to fill the gap between the wide visual and
close spectroscopic binaries. The second one is to
profit from the older observations of poorer quality,
which, however, are useful for determination of the
precise value of orbital period (cf. Hadrava 2005).

The PC-version of FOTEL and a brief manual to
it are presented in this document, which is an up-
dated version of manual available in electronic form
(Hadrava 1991). However, note that the code is still
under development and is being updated from time
to time. Necessarily, the same is true for this de-
scription (and partly also for the built-in Help which,
however, is not frequently used). The users of FO-
TEL are thus asked to pay an attention to the date
of their release of both the code and the manual,
and to verify if some new versions are accessible on
web (http://www.asu.cas.cz/˜had/fotel.html). The
source files of the code and examples of the input
data can be downloaded by authorized users.3

2 Physical model

2.1 Orbital motion

The primary and the secondary star are supposed to
move in Keplerian orbits

r1,2 =
a1,2(1 − e2)

1 + e cosυ
, (1)

three-axial approximation is appreciable mainly in the vicinity
of the inner Lagrangian point L1 for components nearly filling
their Roche lobe. However, the region of L1-point is hidden
during the eclipses, which dominate the light-curve solution.
Moreover, the assumptions of Roche geometry are anyway vi-
olated for components close to their Roche lobe.

3The IP-address of computer(s) for which the access is re-
quested should be sent (e.g. via the author’s e-mail address
given above in heading) to register and to get on the list of
authorized users.
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υ = 2arctan

(

√

1 + e

1 − e
tg
E

2

)

, (2)

M = E − e sinE (3)

around the center of gravity of this pair, which itself
can be in a similar motion around the common center
of mass with a distant third star (the orbital elements
corresponding to the third companion will be identi-
fied by dashed symbols). Secular changes of period P ,
periastron longitude ω and semimajor axes a1,2 can
be included into the calculation. The mean anomaly
M is therefore calculated from the heliocentric time
t of observation as

M = 2π
τ

P0

(

1 − τ

2P0

(

Ṗ0 + k
τ

P0

))

, (4)

where

τ ≡ t− t0 − ∆t , (5)

t0 is the epoch of the reference periastron passage
(which is taken also as the origin of phases), ∆t is
the correction for light-time effect

∆t =
P ′K1+2

2πc
(1 − e′2)3/2 sin(ω′ + υ′)

1 + e′ cos(υ′)
, (6)

where K1+2 is the semiaplitude of the center of mass
of the subsystem of stars No. 1 and 2 with respect to
the total center of mass including the star No. 3, c is
the speed of light, and

k =
1

3
(P0P̈0 − 2Ṗ 2

0 ) . (7)

The instantaneous period P (t) is given by

P−1(t) =
1

2π

dM

dt
=

1

P0

(

1 − τ

P0

(

Ṗ0 +
3kτ

2P0

))

(8)

and its change

Ṗ (t) = −P
2(t)

2π

d2M

dt2
=
P 2(t)

P 2
0

(

Ṗ0 + 3k
τ

P0

)

. (9)

Note, that it is customary to express the timing of
minima (to investigate their O–C) by the relation in-
verse to Eq. (4)

t = t0 + P0

(

M

2π

)

+
P0Ṗ0

2

(

M

2π

)2

+ k′
(

M

2π

)3

, (10)

where

k′ =
P0

6
(P0P̈0 + Ṗ 2

0 ) =
P0

2
(k + Ṗ 2

0 ) . (11)

Neither the period (P = 2π dt
dM ), nor its time deriva-

tive (Ṗ = 4π2

P
d2t

dM2 ) are polynomial functions of time
in this approximation. An alternative formula

M = 4π
τ

P0

(

1 +

√

1 + 2Ṗ0
τ

P0

)−1

, (12)

to Eq. (4) can be chosen by setting key(7) = 1 (cf.
Section 4.2). This formula is asserted by Petr Har-
manec because it holds constant increase of period
∆P = Ṗ P = Ṗ0P0.

The secular changes of ω, K-velocities K1,2 as well
as those of other parameters are taken as linearly
varying with time

ω(t) = ω0 + ω̇0τ etc. (13)

The observed radial velocities of the primary or
secondary component are supposed to correspond to
the motion of centers of both stars

RV1,2 = K1,2[cos(ω + υ) + e cos(ω)] + (14)

+K1+2[cos(ω′ + υ′) + e′ cos(ω′)] + γ ,

where the semiamplitudes K1,2 are related with the
mass ratio q = M2/M1 of the components and with
the above used orbital elements by

K1 = −qK2 =
2πa1 sin i

P
√

1 − e2
, (15)

i is the inclination of the orbit. The radial velocity of
the third star is

RV3 = −K3[cos(ω′ + υ′) + e′ cos(ω′)] + γ . (16)

Note, that while K2 and K1+2 are converged in ratio
with K1, the amplitude K3 is converged in its abso-
lute value (cf. Tab. I on p. 7).

The projection r⊥ on the sky of the instantaneous
distance r = r1 + r2 between the components of the
close pair is given by

r2⊥ =

(

a(1 − e2)

1 + e cosυ

)2
[

1 − sin2(ω + υ) sin2 i
]

, (17)

and the position angle φ by

tg φ = cos i tg(ω + υ) . (18)

The angular distance of the stars is fitted in loga-
rithmic scale and the position angle is fitted as an-
other independent variable (despite they are usually
measured simultaneously). The phases and epochs of
primary and secondary photometric minima due to
eclipses are calculated by minimization of expression
(17)

0 =
dr2⊥
dυ

=
2a2(1 − e2)2 sin2 i

(1 + e cosυ)3
[

e sin υ ctg2i− (19)

− cos(ω + υ) (sin(ω + υ) + e sinω)] .

For i = π/2 the minima are identical with conjunc-
tions of the stars during their apparent motion in the
direction of the line of nodes,

cos(ω + υ) = 0 , (20)
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however, for slightly smaller inclinations they can dif-
fer from the conjunctions due to the relative motion
of stars perpendicularly to the line of nodes

cos(ω + υ) ' e cosω cos2i

sin2i+ eσ sinω
, (21)

where σ = sign(sin(ω + υ)) distinguishes between
the primary and secondary minimum. This solution,
which is of the second order in cos2i, gives generally
better results for all cases in which the eclipses can
occur (i ' π/2, e arbitrary) than the analogous ap-
proximation (VI.9-22) obtained by Kopal (1959) us-
ing the expansion up to the second order in e (even
if the sign of the second-order term is corrected in
his formula). The times and phases of reference pri-
mary and secondary minimum, together with those
of RVmax, RVmin and conjunctions are also given in
the output.

2.2 Changes of light

In general, the shapes of both stars can vary in the
course of the orbital motion with non-zero eccentric-
ity or for an oblique rotation. Consequently, the con-
ditions for calculation of the proper shape and the
reflected radiation of both stellar discs, as well as the
geometry of their eclipse should be calculated sepa-
rately for each point in the light-curve. Due to the
varying tidal force, a binary component can not be in
exact hydrostatic equilibrium if it is not co-rotating
with the orbital motion, i.e. if the synchronism or
co-planarity of the equator with the orbit or the zero
eccentricity are violated. Actually, distortions of the
shape of star leading to the tidal synchronization take
place in these cases. Exactly speaking, even if all
these conditions are satisfied, the hydrostatic equilib-
rium is incompatible with the radiative equilibrium in
the illuminated and/or gravitationally darkened at-
mosphere (Hadrava 1987b, 1988). None the less, the
shape of the star can be approximated by equipoten-
tials of an effective potential.4 Because the calcula-
tion of the shapes of the stars and their corresponding
radiation is numerically relatively exhaustive task, it
is possible in FOTEL 4 to choose between the ap-
proximation of the stellar shapes by triaxial ellipsoids
(which is faster and usually satisfactory) or by the
Roche equipotentials (which is physically more con-
vincing). The corresponding models are described in
this Section.

Even if the quasi-hydrostatic assumption of equipo-
tential shapes of stars is accepted, the choice of the
proper equipotential attributed to the stellar surface
is an open question. The estimate of variations of the

4Such a generalization of Roche model for nonsynchronism
was suggested by Kopal (1956), who used wrong potential.
Correct one was found by Plavec (1958), see also Limber (1963)
and Wilson (1979) for the explanation.

stellar inner structure due to the varying tidal force
and its consequences for the surface layer has been
studied by Hadrava (1986). The result includes the
assumption of constant volume used by Wilson (1979)
as a special case for a particular value (γ = 1.25,
which dosn’t seem to be much plausible) of the poly-
tropic index of subphotospheric layers (the mantle).
The polytropic approximation is thus used in FOTEL
as a compromise between the traditionally accepted
but physically non-acceptable approximations and a
desirable but still non-existing and probably numeri-
cally very complicated physical model. A similar ar-
gumentation can be led e.g. for the problem of gravity
darkening (Hadrava 1988).

2.2.1 Shape of stars in Roche model

Following Wilson (1979), the effective potential in a
component (e.g. the primary) of the binary is given
by

Φ(~x) = −Ω2a2

1 + q

[

a

x
+

qa

|~x− ~r| −
qa

r
− qa

r2
xr + (22)

+
(1 + q)Q2

2a2
(x2 − x2

Q)

]

,

where ~x is the radius-vector from the centre of the
star (x ≡ |~x|), Ω = 2π/P is the mean orbital angu-
lar frequency, a is the semimajor axis, q = M2/M1 is
the mass ratio, ~r is the instantaneous position of the
secondary (r ≡ |~r|), Q is the synchronization index of
the star, i.e. the ratio of sidereal rotational and or-
bital frequency, xr and xQ are the projections of ~x on
~ir ≡ ~r/r (the direction of ~r) and on ~iQ (the direction
of the rotational axis), respectively. The rotational
axis is not necessarily perpendicular to the orbital
plane. Its orientation is defined by polar distance
θQ and the longitude φQ (measured in the direction
of orbital motion) in spherical coordinates with the
pole perpendicular to the orbital plane and the main
meridian given by ~r at the time t0 of the priastron
passage. The rotational axis is supposed to hold its
orientation with respect to the inertial frame in the
course of the orbital motion or to precess with the
rate φ̇Q. The instantaneous angle θ(t) between ~iQ
and ~ir is thus given by

cos θ = sin θQ cos(υ − φQ + (ω̇0 − φ̇Q)τ) . (23)

The potential (22) possesses the mirror symmetry
with respect to the plane defined by ~iQ and ~ir. The
net of spherical coordinates with the main meridian
in this plane and the pole in direction~ir (where there
can be the singularity in L1-point in the classical case)
is thus used to describe the stellar surface.

The potential (22) can be decomposed into a part

Φ̄(x) = −Ω2a2

1 + q

[

a

x
+

(1 + q)Q2

3a2
x2

]

, (24)
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which is spherically symmetric with respect to the
centre of the star, and the asymmetrical part

Φ̃(~x) = Φ − Φ̄ = −Ω2a2

1 + q

[

qa

|~x− ~r| −
qa

r
− qa

r2
xr +

+
(1 + q)Q2

6a2
(x2 − 3x2

Q)

]

=

= −Ω2a2

1 + q

[

qa

2r3
(3x2

r − x2) + (25)

+
(1 + q)Q2

6a2
(x2 − 3x2

Q) +
qa

r
o((

x

r
)3)

]

which vanishes if averaged over the solid angle mea-
sured from the centre of the star

〈Φ̃〉 ≡
∫

x=const.

Φ̃
d2ω

4π
= 0 . (26)

Obviously, the third term in the bracket on the right
hand side of Eq. (22), which is constant at a given
moment, compensates the variation of the potential
caused by the companion star in the centre of the
binary. We will use the potential (24) to define the
effective radius R of the star as the radius, at which

Φ̄(R) ≡ −Ω2a2

1 + q

[

a

R
+

(1 + q)Q2

3a2
R2

]

= Φ0 , (27)

where Φ0 is the value of the total potential (22) at
the surface. If the equation Φ(~x) = Φ0 (where the
left and right hand side are given by (22) and (27),
respectively) is solved with respect to the square of
the denominator x of the first term in Eq. (22) and
the higher order terms in x/a or R/a are neglected
like in Eq. (25), we can get the equation

x2 + α(3x2
r − x2) + β(3x2

Q − x2) = R2 (28)

of the triaxial ellipsoid approximating the shape of
the primary star, where

α = −qR
3

r3
and β =

(1 + q)Q2R3

3a3
. (29)

The corresponding semi-major axes are

A1,2 = R

[

1 − α+ β

4
± (30)

±3

4

√

α2 + (4 cos θ − 2)αβ + β2

]

in the plane (~iQ,~ir) and

A3 = R

[

1 +
α+ β

2

]

(31)

perpendicularly to this plane. Obviously, A1A2A3 '
R3, hence the volume of a sphere with the effective
radius R (defined to fit the potential on the surface)
is equal (in the first approximation) to the volume of
the triaxial ellipsoid.

2.2.2 Radiation in the approximation of tri-
axial ellipsoids

In this model the shapes of stars are approximated
by triaxial ellipsoids with the semiaxes

A = D

[

1 +
R3

q

(

− 2

r3
− (1 + q)Q2

)]−1/2

(32)

B = D

[

1 +
R3

q

(

1

r3
− (1 + q)Q2

)]−1/2

(33)

C = D

[

1 +
R3

qr3

]−1/2

, (34)

in directions toward the companion, perpendicular to
it in the orbital plane and perpendicular to the orbital
plane, respectively. Here

D = R

[

1 − 2

3

1 + q

q
Q2R3

]1/2

, (35)

r is the instantaneous distance between centers of the
stars, Q is the synchronization index, i.e. the ratio
of rotational and orbital frequency, and R is effective
radius

(

' (ABC)1/3
)

. R varies according to

q

2R2
+

2

3
(1 + q)Q2R+

4κ− 5

κ− 1

1

2qr2
= const., (36)

where κ is the polytropic index of the star (p ∼ ρκ;
note, that R is constant for κ=1.25) – cf. Hadrava
(1987). The effective radii R1,2 of components at pe-
riastron are the elements of the light curve (i.e. a
free parameters to be given in the input or found by
the solution). The zero-points of light-curves are ad-
justed to luminosities of uneclipsed discs with these
radii.

The instantaneous luminosity Lλ,j of the jth star
is taken proportional to the area of its apparent disc

Lλ,j =

(

Ra,j

Rj

)2

10−.4mλ,j , (37)

where the apparent radius Ra is given by

R2
a =

[

A2B2 cos2 i+ (B2+ (38)

+(A2 −B2) cos2(ω + υ))C2 sin2 i
]1/2

.

The 3rd star is assumed to be spherical, consequently
Lλ,3 = 10−.4mλ,3 , or Lλ,3 = 0 for R3 = 0. Provided
that the temperature Tj of the j-th star (j=1, 2, 3)
is set ≤0, the corresponding colour magnitudes mλ,j

are taken as independent variables and the value of
the wavelength λ has no influence on them. If, how-
ever, Tj > 0, the colour magnitudes are calculated to
correspond to the black-body radiation,

mλ,j = −2.5 log

(

R2
a,j

Bλ(Tj)

Bλ(T0)

)

+ ∆mj , (39)
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where T0 is the temperature of a reference star (e.g.
the comparison star if the data from differential pho-
tometry are reduced, or a star of spectral type A0,
T0=10000 K, which is included in the code as a stan-
dard). In the former case, it is customary to separate
the data from various spectral bands into different
Datasets, while in the later case it is advantageous
to merge them into a common Dataset to make the
temperature responsible for the differences between
their zero-levels. Note, that in any case, only the
differences between magnitudes of the stars (mλ,j or
∆mj) are defined by the light curves, while their ab-
solute value and the zero-level are linearly dependent.
It is thus recommended to fix the magnitudes of one
star (e.g. primary) equal to a chosen value (e.g. zero
or the absolute magnitudes corresponding to its spec-
tral type).

The reflection of the light from the secondary star
on the surface of the primary is included according
to the formula by Formiggini and Leibowitz (1990)
corrected by Hadrava (1992b)

L1,2 =
kλ,1Lλ,2

3 − u

B1C1B2C2

4πr2R2
2

[

3uπ

4
(1 + cosα)2+

+4(1− u)(sinα+ (π − α) cosα)

]

, (40)

where u is the limb-darkening coefficient and

α = arccos[sin i sin(ω + υ)] (41)

is the angle between the line of sight and the direction
toward the companion. The effective monochromatic
reflection albedo kλ,j can be fixed or converged as a
free parameter of the light curve, if the temperature
of the particular star is set ≤0. If this temperature
(e.g. for the primary) is 0 and the temperature of
the second star is 6=0, the albedo is calculated from

kλ,1 =
hcT 4

2

4kλT 5
1

exp( hc
kλT1

)(exp( hc
kλ|T2|

) − 1)

(exp( hc
kλT1

) − 1)2
. (42)

For the reflection on the secondary (j = 2), the change
of indices 1 and 2 and α → π − α must be done in
the above formulas.

In general, the reflection reduces the limb darken-
ing, which could be taken into account according to
Vaz and Nordlund (1985). However, a treatment of
such small effects would be justified only after includ-
ing a more realistic model of the atmosphere, hence
the limb darkening of the reflected light is supposed
to be equal to the limb darkening of the proper radi-
ation of the star

∆I(cosψ) = ∆I1.(1 − u+ u cosψ) (43)

(u = uλ,j) in the present version of FOTEL.
The geometry of the eclipses is simplified to occul-

tation of two circular discs with apparent radii Ra

and linear limb darkening u. The luminosity ∆L ob-
scured during the eclipse of the primary thus reads

∆L = 0 for r⊥ > Ra,1 +Ra,2

= Lλ,1 for r⊥ +Ra,1 < Ra,2

=

∫ R2

a,1

0

I(µ)ϕ(ρ)dρ2 , (44)

where

I(µ) =
3(Lλ,1 + L1,2)

πR2
a,1(3 − u)

(1 − u+ µu) , (45)

µ =
√

1 − ρ2/R2
a,1 , (46)

and

ϕ(ρ) = 0 for ρ < r⊥ −Ra,2

= 0 for ρ > r⊥ +Ra,2

= π for ρ < Ra,2 − r⊥

= arccos
ρ2 + r2⊥ −R2

a,2

2ρr⊥
. (47)

We have assumed here that the reflected light is e-
clipsed in the same way as the radiation of the star
itself. The integral in Eq. (44) for the last case of
Eq. (47) is calculated numerically. For the secondary
minimum, the indices 1 and 2 have to be interchanged.

To enable a search for periodic changes in O–C
(arising e.g. from a periodicity of the third light, or
from the rotation of a spotted – but not occulted)
component – a periodic term

δmλ(t) = δm0,λ sin(2π
t− t′0
P ′

) (48)

is included to the total magnitude whenever the pe-
riod P ′ is nonzero.

The resulting magnitude of the whole system thus
reads

mλ = −2.5 log (Lλ,1 + Lλ,2 + Lλ,3 − ∆L+ L1,2+

+L2,1) + (t− t0)
dmλ

dt
+DAλ + δmλ , (49)

where D is the reddening and Aλ extinction coeffi-
cient.

Gravity darkening and correlated gravity-limb dark-
ening are to be included into a new version of FOTEL
with exact Roche geometry. However, up to now, el-
ements between No. 143 and 189 (cf. Tab. I) are not
used in the present version of the code.

5The time unit can be arbitrary for the calulations, however,
some physical values on output are correctly calculated only if
this time unit is chosen days.

6The periastron longitude and its time derivative were given
in radians in old versions of FOTEL. It is still calculated in
radians internally, however, it is converted to degrees on input
and output.

7Note that in versions up to FOTEL 3, the value of sin i

was read at input instead of the inclination. The value of i

is (equally as ω) calculated in radians internally, but read in
degrees.
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Table I. List of elements

n En Emin Emax

1 P Orbital period [in an arbitrary time unit]5 0 +∞
2 t0 Periastron epoch [time unit]
3 e Eccentricity 0 1
4 ω Periastron longitude [deg]6

5 K1 Amplitude of R.V. [km/s]
6 q = m2/m1 mass ratio
7 R1 Radius [in units of semimajor axis] 0 1 −E3

8 R2 Radius [in units of semimajor axis] 0 1 −E3 −E7

9 i inclination [deg]7

10...19 δm0,λ

20...29 Aλ extinction coefficients 0 +∞
30...39 uλ,1 limb darkening of primary 0 1
40...49 uλ,2 limb darkening of secondary 0 1
50 dP/dt
51 P ′ Period of the 3rd star [time unit] 0 +∞
52 t′0 Periastron epoch of the 3rd star [time unit]
53 e′ Eccentricity of the 3rd star 0 1
54 ω′ Periastron longitude of the 3rd star [deg]6

55 K1+2/K1

56 dω/dt [deg / time unit]6

57, 58 κ1,2 Polytrop. index of 1st and 2nd star 1 +∞
59 Q1 Synchroniz. index of 1st star
60...69 kλ,1 Albedo of the primary
70...79 kλ,2 Albedo of the secondary
80...89 dmλ/dt Linear trend [in mag. per time unit]
90 Q2 Synchroniz. index of 2nd star.
91...94 T1, T2, T3, T0 Temperatures [K]
95 R3 Radius [in units of close-pair semimajor axis]
96...98 ∆m1,2,3 Corrections of magnitudes
99 D Reddening 0 +∞
100...109 λ Wavelengths [Å]
110...119 mλ,1 Colour magnitudes of the 1st star
120...129 mλ,2 Colour magnitudes of the 2nd star
130...139 mλ,3 Colour magnitudes of the 3rd star
140 dK1/dt
141 dK2/dt−K2/K1 ∗ dK1/dt

142 1
3 (P0P̈0 − 2Ṗ 2

0 )

143...145 θQ,1, φQ,1, φ̇Q,1 orientation of the 1st star rotation [radian]

146...148 θQ,2, φQ,2, φ̇Q,2 orientation of the 2nd star rotation [radian]
150...159 gravity darkening of the 1st star
160...169 gravity darkening of the 2nd star
170...179 correlated darkening of the 1st star
180...189 correlated darkening of the 2nd star
190 K3 [km/s]

3 Numerical methods

3.1 Solution of elements

The solution of light- and/or RV- curves, as well as
the fit of visual orbit or timing of minima is based on
the minimization of the sum Σ(O−C)2 as a function

of the elements. Here Σ means summation over all
points

Σ(p) =
∑

I

WI

K2
I0

∑

i∈I

wi [yi − f(xi, p)]
2 , (50)

where xi, yi and wi are the time, value and the weight
of the i-th point in the Input file, respectively, f is the
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theoretical value at xi corresponding to the appropri-
ate Type of variable for the given values of param-
eters p. WI is the common weight of the Data set
Nr. I to which the i-th point belongs. This weight is
reduced by the square of the coefficient KI0, which is
set equal to the initial value of K1 for the Data sets
containing RV’s, or to 1 for Data sets with the colour
magnitudes, distances, position angles or the timing.
This normalization transforms the range of RV’s to
the order of unity comparable to the range of pho-
tometry given in magnitudes or the other quantities
in their corresponding units to enable the summation
of their contributions to Σ for the simultaneous so-
lution. The influence of different types of data and
their sets on the solution can be tuned by appropriate
choice of WI .

The minimization formally corresponds to the so-
lution of the set of equations

0 =
∂Σ(p)

∂pα
= (51)

= −2
∑

I

WI

K2
I0

∑

i∈I

wi [yi − f(xi, p)]
∂f(xi, p)

∂pα
.

These equations reduce to a simple set

0 =
∑

I

WI

K2
I0

∑

i∈I

wi



yi −
∑

β

pβfβ(xi)



 fα(xi) (52)

of linear equations in parameters p if f is a linear
combination of p,

f(xi, p) =
∑

α

pαfα(xi) . (53)

This is indeed the case for radial velocities (see Eq.
(14)), which can be rewritten for the simple motion
as

RV = [K cosω] cosυ − [K sinω] sin υ +

+[Ke cosω + γ] , (54)

(cf., e.g., van Paradijs et al., 1977). The elements γ,
K and ω can be thus solved analytically if P , e and
t0 are either known or calculated numerically. The
same is true for all γ’s of different Data sets, for K2

or K and ω of the third motion (provided that the
non-linear influence of light-time effect is neglected).
However, for the model of light curves, f is non-linear
in both ω and the mass-ratio q = m2/m1 = K1/K2,
as well as in most of the other parameters apart from
the zero-points of the Data sets. We will thus assume

f(xi, p) = pI +Kif̄(xi, p̄) , (55)

where the parameter Ki ≡ K1 will be calculated for
the radial velocities as

K1 =

∑

I3RVWI

[

∑

i∈Iwiyif̄i−
∑

i
wiyi

∑

i
wif̄i

∑

i
wi

]

∑

I3RVWI

[

∑

i∈I wif̄2
i − (

∑

i
wif̄i)2

∑

i
wi

] ,(56)

and it will be fixed Ki ≡ 1 for Data sets containing
photometry, visual positions or timing. For all types
of data apart of the timing (for which it is set equal to
zero) the zero-points pI of the Data sets are calculated
as

pI =

∑

i∈I wiyi −KI

∑

i wif̄i
∑

i∈I wi
, (57)

the contribution ΣI of the I-th Data sets to the total
sum as

ΣI =
∑

i∈I

wi

[

yi − pI −KI f̄i

]2
/K2

I0 , (58)

and the mean error of the measurements in the I-th
Data set reads

∆I =

{

∑

i∈I

wi

[

yi − pI −KI f̄i

]2
/
∑

i∈I

wi

}1/2

. (59)

In these equations fi is the abbreviation for f(xi, p̄),
which now gives the theoretical magnitudes or the-
oretical RV’s divided by K1, p̄ denotes all the other
elements (which will be calculated numerically) apart
of K1 and zero-points pI .

The minimization in non-linear parameters p̄ is car-
ried out using the simplex method as it has been de-
scribed by Kallrath and Linnell (1987). The number
of transformations of the simplex in each step is 10-
times the number of elements being converged in the
step (the linear parameters, which are calculated di-
rectly by least square method as described above are
not included in this number). The maximum number
of parameters allowed to converge in one step was
limited to 10 in older versions of FOTEL and it is in-
creased to 20 on request of some users. However, it is
recommended to proceed with the solution carefully,
allowing first to converge a few most crucial param-
eters and to improve the solution by converging the
less important parameters only afterwards. The expe-
rience shows that additional parameters often result
in shallow local minima and enable the simplex to fall
in them before it can perceive the global behaviour
of the minimized function.

Following Horn’s numerical approach in SPEL, the
values En of elements are transformed for the opti-
mization by logarithmic transformation

pn = ln

(

En −Emin

Emax −En

)

for En ∈ (Emin, Emax)

= ln (En −Emin) for Emax = +∞, (60)

= En for Emax = +∞, Emin = −∞

which maps the range of their physically meaningful
values (Emin, Emax) into the infinite interval (−∞,+∞)
– see Tab. I.

The above explained transformation of variables
enables to avoid meaningless solutions like those with
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Fig. 1. Minimization of 2-dimensional function − exp(−x2 − y2)(2 + cos(10x) cos(10y)) by simplex method.
The simplex converges into the global minimum in the point (0,0) from initial points P and S, while for the
initial point Q (which is symmetric with respect to P ) it stops at a local minimum because of smaller values
of initial steps. Similarly, simplex starting from point R (symmetric with S) falls into another local minimum
in the direction of y-axis earlier than it can start to move in the x-direction for which the initial step was
chosen too small. The points of the initial simplex at S are labeled by their numbers and their positions after
the corresponding simplex oparations by small digits – cf. the protocol on the convergence listed in text.
(Taken from Hadrava 2003b.)

negative luminosities or orbital eccentricity or with a
sum of radii larger than the distance of components
etc. Actually just these transformed parameters p are
the independent variables in which Σ(O−C)2 is min-
imized. The initial steps of elements are multiplied
by dp

dE to obtain the steps of parameters. The val-
ues of p’s are also displayed in the protocol on the
convergence, an example of which follows.

1 B 2 -.53203E+00 .10830E+01 -.42941E+00

2 C 3 -.64052E+00 .72941E+00 -.78296E+00

3 C 1 -.66915E+00 .60000E+00 -.30000E+00

4 B 2 -.13512E+01 .53295E+00 -.57678E+00

5 D 2 -.17099E+01 .29112E+00 -.14698E+00

6 A 2 -.18449E+01 .16987E+00 -.79954E-01

7 A 3 -.19105E+01 .16090E+00 .84454E-01

8 B 2 -.21068E+01 .46160E-01 .13991E+00

9 B 3 -.27563E+01 -.54781E-01 .44622E-01

...

19 B 2 -.30000E+01 .66453E-03 -.31106E-03

20 B 3 -.30000E+01 -.53478E-03 -.19750E-03

21 1 -.30000E+01 .35233E-03 .31267E-03

21 3 -.30000E+01 -.28705E-04 .16289E-04

Here the first column gives the sequential number of
simplex operation, the second one gives its code (A
means reflection, B contraction, C expansion and D
shrinkage – cf. Kallrath and Linnell, 1987), the num-
ber of the worst point of the simplex is in the third
one. Next follows the value of the sum Σ(O−C)2 and
then its coordinates (i.e. the transformed values of
the converged parameters in the order in which they
were introduced in element-parameters). Last two
rows of the protocol without the code of operation
give the number and value of the worst point followed
by the final steps of parameters (which are used as
initial in the following step) and number, value and
parameters of the best point at the end of the run of
simplex minimization. Values of steps and elements
are then transformed back to their physically mean-



10 P. Hadrava

ingful form and given on output. This protocol en-
ables to check the procedure of simplex minimization.
First, the values of Σ(O−C)2 should decrease with the
only possible exception for operation D. If this sum
reaches a constant value well before the end of the
procedure, the result can be accepted. In the oppo-
site case, it should be continued by a new run. The
presence of number 1 in the third column indicates,
that the initial value has been improved by the pro-
cedure (number 1 need not to appear in a case of
D-operation). If Σ(O−C)2 is much higher in the first
row than for the first improvement of the initial value,
the initial step of the corresponding parameter8 was
too high and should be decreased not to waste steps
and to give a chance to other parameters to improve
their values. The user should be aware that the sim-
plex method cannot guarantee to find the global min-
imum. The success depends on the reasonable choice
of the converged parameters, their initial estimates
and initial values of steps.

3.2 Errors and correlations of elements

The errors of the elements found by the above de-
scribed method are given by the depth and the shape
of the function Σ(O−C)2(p) in the vicinity of the par-
ticular solution (i.e. a local minimum) in the p-space.
These characteristics of Σ are further determined by
the errors of the input values yi, by their distribution
in time (xi) as well as by the nature of the solved
problem – e.g. the epoch of periastron passage and
the longitude of periastron are not well defined for
orbits of small eccentricities (they are highly corre-
lated), each of them has large error (even if the sec-
ond one is fixed) if the data available cover only the
extremes of RV or, certainly, if they have large scat-
ter.

If we suppose p = p(y) to be the formal solution
of Eq. (51), then the perturbation δpα of a particular
element caused by a small error δyi of any input value
yi is given by the relations

0 =
∂2Σ(p)

∂pα∂pβ
δpα − 2

WI

K2
I0

wi
∂fi

∂pβ
δyi . (61)

Assuming the errors δyi to be statistically indepen-
dent, we can calculate the statistical average of the
correlation of errors of parameters

〈δpαδpγ〉 = Σ−1
αβΣ−1

γδ

∑

I

W 2
I

K4
I0

∑

i∈I

w2
i

∂fi

∂pβ

∂fi

∂pδ
〈δy2

i 〉 ,(62)

8In our example, which corresponds to the evolution of sim-
plex starting from the point S in Fig. 1, the highest initial sim-
plex point has number 2 (however, its value is not much higher
due to asymptotic flatness of the minimized function and be-
cause the initial steps are chosen properly), what corresponds
to the first converged parameter x.

where Σ−1 is the inverse matrix to the matrix of the
second-order derivatives

Σαβ ≡ 1

2

∂2Σ(p)

∂pα∂pβ
= (63)

=
∑

I

WI

K2
I0

∑

i∈I

wi

{

∂fi

∂pα

∂fi

∂pβ
− [yi − fi]

∂2fi

∂pα∂pβ

}

,

which, in the first approximation, describes the shape
of the function Σ in the vicinity of its minimum.

Following the assumption (55), this matrix can be
simplified for the linear parameters pI and K as

ΣIJ ≡ 1

2

∂2Σ(p)

∂pI∂pJ
= δIJ

WI

K2
I0

∑

i

wi (64)

ΣIK ≡ 1

2

∂2Σ(p)

∂pI∂K
=

WI

K2
I0

∑

i

wif̄i (65)

ΣKK ≡ 1

2

∂2Σ(p)

∂K2
=
∑

I

WI

K2
I0

∑

i

wif̄
2
i , (66)

and for the mixed derivatives in linear and non-linear
(p̄α) parameters as

ΣIα ≡ 1

2

∂2Σ(p)

∂pI∂p̄α
=

WI

KI0

∑

i

wi
∂f̄i

∂p̄α
(67)

ΣKα ≡ 1

2

∂2Σ(p)

∂K∂p̄α
=
∑

I

WI

KI0

∑

i

wif̄i
∂f̄i

∂p̄α
, (68)

while the derivatives in both non-linear parameters
must be calculated according to Eq. (50). The term
containing the 2nd-order derivatives of fi in this equa-
tion is neglected in the present version of FOTEL. Be-
cause the derivatives of f with respect to non-linear
parameters cannot be in general simply expressed as
functions of p, they are calculated numerically as fi-
nite differences with steps in p determined by the in-
stantaneous extension of the simplex.

Usually, we have no information on the errors δyi in
advance. Note, that these errors can be much higher
than the instrumental ones if there a physical process
takes place, which is not included in our theoretical
model (e.g. a flickering for the photometry). Conse-
quently, we will assume this error to be the same for
all data in the same Dataset equal to the value ∆I

given by Eq. (59). The correlation (62) thus reads

〈δpαδpγ〉 = Cαβ ≡ (69)

≡ Σ−1
αβΣ−1

γδ

∑

I

W 2
I

K4
I0

∆2
I

∑

i∈I

w2
i

∂fi

∂pβ

∂fi

∂pδ
.

This assumption is not exact e.g. for the photome-
try, which has lower S/N-ratio in a deep minimum,
or provided we solve a phase-curve, where the prob-
able error of each normal point can be obtained from
the scatter of the original data. In such cases an im-
provement can be achieved by a proper choice of the
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weights wi ∼ (δyi)
−2. A similar choice of weights of

Datasets, WI ∼ (∆I)
−2, is recommended to optimize

the use of information stored in the data. The matrix
C is computed with respect to the transformed pa-
rameters p and then it is multiplied by the Jacobian
∂E
∂p of the transformation (60) to give the standard

deviations of elements and/or zero-points of Datasets√
Cαα and their correlations Cαβ/

√

CααCββ on out-
put.

The complete covariance matrix consisting of er-
rors of parameters together with their correlations
should be given to enable to judge the level of con-
sistency of solutions obtained from different source
data (as argued in Hadrava 2003a). A simple code
named COMBI performing such a calculation is avail-
able (see the Appendix A below).

4 User’s manual

4.1 Implementation of the code

The code FOTEL is written in the language FOR-
TRAN 77. It has been developed and debugged orig-
inally on computers of the type of IBM 370, later
mostly using MS-Fortran for PC. However, it can also
be successfully compiled with other compilers (e.g.
g77 under UNIX or LINUX) and used on different
computers (e.g. on workstations of the type of SUN
or on VAXes). Some minor changes of the code can be
necessary for compilation with a particular compiler,
e.g. the command $LARGE must be switched on or
off if the MS-Fortran is or is not used. Starting from
version of 2004, dimensions of arrays limiting the ca-
pacity of the code can be adjusted as a parameter
in the file FOTELPAR.F (which has to be accessible
to the compiler together with the main source code
FOTEL.FOR).

Apart of the compiled code, the file FOTEL.IN
must be accessible for the running of the code and
the accessibility of the file FOTEL.HLP is necessary
to enable the use of built-in help mode. Other files
with input- (i.e. the initial estimates of parameters
and the measurements) and output- (i.e. the result-
ing elements and the O–C) data can be defined by
the user. Examples of the file FOTEL.IN and the
corresponding input and output files are available on
the web home-page of FOTEL.

4.2 Main control keys

The code starts by reading so called Main control
keys, key(i)|10i=1 (by FORMAT(16I5)) from the file FO-
TEL.IN.
key(1) can switch the code into the interactive mode

(if it is given =0), in which it behaves like the ver-
sions of FOTEL till January 1992, or to the auto-

matic mode (if it is given =5).9 In the later case the
subsequent information is read from FOTEL.IN in-
stead of from the keyboard (the breaks of output and
corresponding instructions for continuation are omit-
ted in this case if the output-file for parameters is
opened). The interactive mode continues at the top-
level menu, where the keys key(i)|6i=2 (i.e. Inpar,
Outpar, Input, Output and Echo) have to be given
again (FORMAT(*,*)). The first four of them define
whether the corresponding Input/Output files are re-
quired (positive value) or not (zero value).

If key(2) ≡ Inpar ∈ 〈1, 99〉, the name of file with
the initial values of elements (see Element param-
eters) is read.10 This file is closed immediately after
the elements are read. Inpar > 99 switches the run
into the Help-mode of the code (this is useful in the
interactive mode only), Inpar < 0 terminates the cal-
culation.

If key(3) ≡ Outpar > 0, the principal results will
be stored in a file.11 Outpar > 1 sets a higher level of
the output, in which the protocol about the conver-
gence and a table of values (after the convergence) of
all elements are written into the output file.

key(4) ≡ Input > 0 indicates the input of obser-
vational data from a file12 (see Data format). If
Input = 0, the previously entered data are used. If
Input < 0, a synthetic curve is generated (i.e. 50
points with time-step =1/50 of the time-unit), the
Type of variable = abs(Input).

key(5) ≡ Output > 0 causes the residual O − C of
individual data-points, their phases with respect to
both periods etc. to be written to a file.13

key(6) ≡ Echo > 0 causes that all data read from
the keyboard are displayed on the screen. If Echo > 1
then the data from Input-file are also displayed.

key(7) = 1 switches on the calculation of Ṗ accord-
ing to Eq. (12).

key(8) > 0 switches on the automatic end of con-
vergence (its value gives the number of digits of Σ(O−
C) taken into account).

key(9) = 0 switches on the triaxial ellipsoid ap-
proximation to the shape of binary components. If
key(9) > 0 in FOTEL 4 (release starting from July
1993), it gives the number of points in latitude and
2key(9) − 2 gives the number points in longitude on
the component surfaces. It thus has to be equal to 3
at least and, due to limited array dimensions, equal
to 13 at maximum.

key(10) > 0 increases the weight of photometric

9The automatic mode is mostly used in practice.
10It means it is the second record of the file FOTEL.IN in

the automatic mode.
11The user is asked in the interactive mode to specify its

name for the first time of its use, or it has to be given in the
subsequent record of the file FOTEL.IN in the automatic mode.

12Its name is to be given as before.
13Its name is to be given again.
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observational points 2key(10)× to hit the solution of
light-curves with narrow minima poorely covered by
observations and noisy maxima.

4.3 Data format

The data to be fitted must be prepared in an Input-
file, the name of which is typed on the request of FO-
TEL in its interactive mode, or it is typed in the file
FOTEL.IN. This file is supposed to contain one com-
ment record (FORMAT(1X,79A1)) followed by records,14

each one containing single data point in the following
structure:
T ime, V alue, Sign(∗),Weight(1.0), End,Dataset(1),
Type of variable(3), Text
written by FORMAT(2F10.4,1A1,F8.2,I1,2I5,40A1).
The defaults are given in brackets.
T ime can be given in arbitrary units (e.g., in peri-

ods for phase curves), but the light-time effect as well
as some quantities on output are calculated assuming
that the time-unit is the day (usually the T ime is
given by Julian date).
V alue gives the magnitude, radial velocity, angular

distance and position angle according to the appro-
priate Type of var. (cf. Tab. II) observed at the given
T ime. Radial velocities are to be given in km/s to
yield the correct light-time effect etc. (as mentioned
above for the T ime). O − C is normalized per the
initial value of K1 for RV’s and per magnitude for
light curves to be comparable in the procedure of si-
multaneous solution.

An alphabetic character Sign is ignored by FO-
TEL, but it is hold for the compatibility of the data
with other Ondřejov programs for graphic output.
Weight gives relative weight of the point within

the Data− set.
End > 0 marks the last record to be taken into

account.
Dataset ∈ 〈1, 30〉 denotes to which set of data (see

Dataset parameters) the particular point belongs.
This allows the user to treat the possible zero-point
shifts introduced by different spectrographs or pho-
tometer or photometric band passes. Datasets of the
individual points must be chosen reasonably to sepa-
rate radial velocities from magnitudes as well as dif-
ferent colours, provided the colour correction is not
specified.

14The maximum number of these records taken into ac-
count is given by the parameter npnt in the source-file
FOTELPAR.F.

15The angular distance can be given on input in arbitrary
units (typically in seconds of arc), but it is transformed to
logaritmic scale for the fitting of the orbital parameters, so that
the zero-point of the corresponding Dataset gives the relation
between the distance of the binary and the unit of input data.

16The position angle is to be given in degrees on input, but
it is transformed into radians for the fitting.

17The V alue is ignored and it is set equal to the T ime for

Table II. Types of variables

1 Radial velocity of the primary [km/s]
2 Radial velocity of the secondary [km/s]
3–12 Magnitudes in different colour bands
13 Radial velocity of the third star [km/s]
14 Angular distance between the primary

and the secondary15

15 Position angle16

16 Timing of minima17

Type of variable distinguishes whether the observed
V alue at the point is radial velocity of primary or
secondary component (Type = 1, 2 – in agreement
with SPEL), or if it is magnitude in a particular fil-
ter (Type = 3, ..., 12). The first two Datasets and the
minimal and maximal V alue appearing for the points
of the particular Type in the file (and vice versa the
first two Types for each Dataset) appear on the out-
put.

This sequence of comment-record and data-records
can be repeated, provided the previous one is ended
by End > 0.

4.4 Dataset parameters

All data in the file can be divided into several (30
at maximum) sets called Datasets to enable to cal-
culate their different zero-points (e.g. γ-velocities for
data originating from different spectrographs like in
SPEL, or systematic shifts for differential photometry
obtained with respect to different comparison stars).
These zero-levels of Datasets are calculated by direct
least-square algorithm before the simplex method is
used. They cannot be fixed and they are not included
in the limit of 10 parameters which can be simulta-
neously converged in one step. The contributions of
separate Data sets to the total sum are given at the
beginning and the end of each step and each of them
can be multiplied by an arbitrarily chosen common
weight of the Data set (standard value =1) to dimin-
ish or to strengthen its influence on the solution. Any
Data sets distinguished in the Input file can be merged
during the calculation if their common zero-point is
required.

These changes of weight or identity of Datasets
are controlled by Dataset parameters, which must be
typed from the keyboard (in free format) in order
Number of dataset (1...30), New number (to which
the dataset is to be merged or ≤0 if it has to be
unchanged) and the Weight of the dataset, i.e. co-
efficient by which the Sum contribution (O − C)2

and Sum of weights of individual measurements is
to be multiplied. Input of Dataset parameters is

type of variable equal to 16. Zero levels of Datasets containing
timing are fixed to be =0.
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terminated if Number of dataset=0 is typed. New
check sum is then displayed and possibility of new
change of Dataset parameters is offered. The con-
vergence is started if no change is typed. If Number
of dataset < 0, then the calculation is returned to
input of Main control keys at top-level menu.

4.5 Element parameters

Elements of the binary are numbered as listed in the
Tab. I on p. 7. These elements can be read either
from Inpar-file (see Main control keys), or from
the keyboard. In the former case the Inpar-file must
consist of records containing theNumber of element,
its V alue and value of its initial Step (in free format).
This file is read immediately after the nonzero Inpar-
key is given at Main control keys. In the later
case of the input from the keyboard the Number of
elements is followed by three integer keys (> 0 means
yes, ≤ 0 means no):
Converge – determining if the element is to be con-
verged,
Change of value – if the value has to be changed and
Change of step – if the step has to be changed.
Further there must be two real numbers – new V alue
and Step – which are taken into account only in the
cases of positive corresponding keys Ch. val. and Ch.
step. Input of Element parameters is terminated if
the Nr. of element ≤ 0 is typed (note, that it must
be followed by 5 dummy parameters).

4.6 Output

The output is sent from FOTEL to the screen and,
if the corresponding keys Outpar and Output are on,
also to output files for parameters and for the indi-
vidual points of data, resp. Meaning of some of the
output data is obvious; here will be commented the
opposite cases.

During the iteration, the protocol on the simplex
convergence is shown on the screen enabling to esti-
mate its progress. For each step of the simplex oper-
ation there is its number within the loop followed by
its code A, B, C or D (cf. p. 9) and the number of
the worst point of the simplex. At the beginning 1
corresponds to the initial estimate of parameters and
1+n to the point with dominant change of the n-th
(by its order) parameter converged by simplex. The
first improvement of the initial estimate thus takes
place only when Nr. 1 appears; it may be helpful
to decrease the initial step of the parameter which
gives the first worst point, if the improvement occurs
too late or not at all. In the next column, there is
the value of the sum in the worst point. It should de-
crease in the course of the convergence (the shrinkage
of simplex, i.e. D, may cause also a small increase)
and a constant value indicates the simplex being at a

local minimum. Next there are values of parameters
at the worst point transformed according to Tab. I on
p. 7. At the end of the loop both the worst and the
best point are indicated, the first one with the actual
(transformed) values of the steps and the second one
with the transformed values of parameters.

In the output of parameters, the errors and cross-
correlation coefficients of all converged parameters
are followed by a table of all parameters listed in
Tab. I.

Some of the basic parameters are then printed with
higher precision and also some of their consequences
are calculated. Note, that some of them are reason-
able only if the input data are in standard units (time
in days and RV’s in km/s). Finally, for each period
in question, there printed a histogram of the distri-
bution of data points in bins wide 0.05 in phase, to
give an estimate how the curve is covered.

In the output of data there is printed a table, where
in the first column is the time of observation, in the
second one is the input value corrected for the zero
point of its data set, in the third column is the phase
with respect to the period of the close orbit (corrected
for the light-time effect and the secular change of pe-
riod) and next is O–C. If the period of wide orbit is
non-zero, the corresponding phase is printed in the
fifth column (note that in older versions this column
was printed ever as the fourth one) and for velocities
there are finally printed in two additional columns
also residuals after the subtraction of the motion in
the close and wide orbit, resp.
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A Combination of different so-

lutions

Let us have k solutions (labeled by capital subscript
A) of a fit in an n-dimensional space of parameters
p ≡ {pi|ni=1}, each one characterized by a distribu-
tion fA(p) of probability of particular values of p.
The probability that p satisfies all these solutions is
simply the product

f(p) =

k
∏

A=1

fA(p) . (70)

The combination of the solutions can be defined as
maximum of this function, which characterizes its dis-
tribution.

Suppose all the solutions have the normal distribu-
tions

fA(p) = N(p;pA, σA) ≡ (2π)−
n
2 |σA|−

1

2 (71)

. exp

(

−1

2
(p− pA)Tσ−1

A (p − pA)

)

with maxima at values p = pA and the covariance
matrices σA. The distribution of their combination is
then also a normal distribution

f0(p) = N(p;p0, σ0) (72)

where

σ−1
0 =

k
∑

A=1

σ−1
A , (73)

p0 = σ0

k
∑

A=1

σ−1
A pA . (74)

The probability of this combined solution can be taken
as

P0 ≡
k
∏

A=1

fA(p0)

fA(pA)
= (75)

= exp

(

1

2
pT

0 σ
−1
0 p0 −

1

2

k
∑

A=1

pT
Aσ

−1
A pA

)

.

The values of P0, p0 and σ0 can be calculated from
the output of errors and correlation coefficients from
FOTEL using the code COMBI.

The input of this code has to be in file COMBI.IN
and its format is shown in the following example:

2

1 0 0. 1.

3 0 0. 0.

1 1 1. 1.

3 3 1. 1.

3 1 0.9999 -0.9999

The first line gives the number (k) of solutions to be
combined, subsequent lines give the values of param-
eters, errors and correlations for these solutions in
last k columns. The first two columns i, j (integer)
distinguish the parameter components to which the
correlations refer, or the error of the component if
i = j, or the value of the parameter, if j = 0. These
lines can be given in an arbitrary order.

The output of this code (for the above example)
has the form

Calculation of consistency of 2 solutions

with 2 parameters:

1 param. 1 .000000E+00 .100000E+01

1 1 error= 1 1 .100000E+01 .100000E+01

2 param. 3 .000000E+00 .000000E+00

2 2 error= 3 3 .100000E+01 .100000E+01

2 1 corel. 3 1 .999900E+00 -.999900E+00

Probability=exp(-.250000E+00)= .778801E+00

Common solution:

1 param. 1 .500000E+00

1 1 error= 1 1 .999975E-02

2 param. 3 .499950E+00

2 2 error= 3 3 .999975E-02

2 1 corel. 3 1 .000000E+00

The input values are repeated at the top (the indices
in the left columns correspond to the order of compo-
nents in the input, the indices right to the explanatory
abbreviation are the original names of components on
input). Then the probability is given according to
Eq. (75). Finally, the combined solution is given in
the same format.

Note at this example, that despite both solutions
give the same value (0.0) of the second component
(named 3), their combination gives a different value
(nearly 0.5) due to the large (nearly 1) correlation of
the first and anticorrelation of the second solution.

It should be also noted, that the quadratic approx-
imation used in Eq. (71) is applicable in a small vicin-
ity of the solution only. It means that, for instance,
two solutions of periodic light curve of RV-curve re-
lated to different epochs of periastron can be found
mutually inconsistent within a small error of this pa-
rameter, despite they are actually identical.


