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251 65 Ondřejov, Czech Republic
e-mail: had@sunstel.asu.cas.cz
http://www.asu.cas.cz/˜had/korel.html

The code KOREL for Fourier disentangling (i.e. simultaneous decomposition of com-
ponent spectra and solution of orbital elements) and ‘line-photometry’ of binary and
multiple stars is described together with auxiliary codes PREKOR, KORNOR etc.

Keywords: Binary stars – spectroscopic, spectra disentangling

Contents

1 Introduction 16

2 Disentangling of composite
spectra 16
2.1 Methods of radial-velocity measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Method of cross-correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 Method of broadening function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Methods of decomposition of spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Direct decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Method of tomographic separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Method of simple disentangling of spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Fourier disentangling and its generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Principle of Fourier disentangling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.2 Simple Fourier disentangling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.3 Line-strength variations and removal of telluric lines . . . . . . . . . . . . . . . . . . . 22
2.4.4 Line photometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.5 Disentangling with intrinsic line-profile variations . . . . . . . . . . . . . . . . . . . . . 25
2.4.6 Broadening by pulsations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Normalization of disentangled
spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Numerical method 27

4 User’s manual 29
4.1 Implementation of the code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Controlling the run

(file KOREL.PAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Input data (file KOREL.DAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 The code PREKOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5 Outputs of KOREL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.6 The code KORNOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.7 The code KORTRANS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.8 Problems with KOREL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

References 35



16 P. Hadrava

1 Introduction

KOREL is one of the software products developed by
the present author for the data processing in the stel-
lar department at Ondřejov observatory. It comple-
ments the codes SPEL (for solution of spectroscopic
elements of binary stars written by J. Horn) and FO-
TEL (P. Hadrava 1990, 1991, 2004) for photometric
+ spectroscopic elements). In both these codes the
orbital elements of binaries (or triple systems) are
solved from radial velocity (RV- hereafter) curves,
in the later case simultaneously with the solution of
light-curves, visual (interferometric) measurements or
eclipses timing.

To get RV-curves it is required to find and to iden-
tify at least some spectral lines belonging to individ-
ual component stars in different exposed spectra of
the binary, to measure their observed wavelengths
and to calculate their Doppler-shifts. This procedure
is quite laborious, even if some handy tool like an-
other Ondřejov code SPEFO (written by J. Horn, cf.
P. Škoda 1996) is used. Moreover, if the line widths
of one or more components are larger than the ampli-
tude of the RV-curve, the lines are blended and the
standard methods of measurement of the line centers
are subjected to errors, or they cannot be used at all.
This takes place in the vicinity of conjunctions even
for sharp lines and the corresponding exposures are
thus useless for solution of RV-curves.

The method of spectra disentangling, performed by
the code KOREL, enables to overcome this problem.
Comparing all available spectra obtained at different
orbital phases, this method fits them as a superposi-
tion of some a priori unknown spectra attributed to
individual components, each one Doppler shifted ei-
ther for RV, which is a free parameter of the fit, or
– even better – for RV, which corresponds to the or-
bital parameters solved directly without the unnec-
essary step of construction of RV-curve. The pro-
cedure is thus much easier even in the cases when
the standard method via RV-curves can be applied.
Moreover, the component spectra, which are obtained
simultaneously with the orbital parameters, can be
used for subsequent interpretation of the results, e.g.
for determination of spectral types.

The mathematical method using Fourier transform
(developed from the technique of cross-corelation for
RV-measurements to solve for the orbital elements),
which is employed in KOREL, enables further gener-
alization for intrinsic line-profile variations (LPVs).
In the first step this generalization involves changes
of line strengths. This ability of KOREL was aimed
originally to improve the fit of spectra obtained dur-
ing a partial eclipse in the binary (the method of line-
photometry). However, it yields an additional option,
namely to decompose also the telluric lines.

In this document, the mathematical principle of the

method is reviewed in Section 2. Some more details
on the numerical method used in the code can be
found in Section 3. The practical use of the code is
described in Section 4.

The information (occasionally updated) about KO-
REL, including this document, is available on WWW
at http://www.asu.cas.cz/˜had/korel.html. The sour-
ce files of the codes and some examples of their use
can be downloaded by authorized users.1

2 Disentangling of composite

spectra

2.1 Methods of radial-velocity measu-
rements

2.1.1 Method of cross-correlation

The idea of this method is based on the fact that the
presence of a weak signal of particular type, like is the
spectrum of a faint secondary component, blended
with a stronger signal or hidden in a noise can be
better revealed from overall coincidence with the ob-
served signal than from some local features (cf. Fig. 1).
The Doppler shift of spectrum is constant in logarith-
mic wavelength scale

x = c lnλ (1)

and, in non-relativistic approximation (v = c∆λ/λ =
∆x), linear in the radial velocity v. The cross-corre-
lation

F (v) ≡

∫

I(x + v)J(x)dx (2)

of the observed spectrum I(x) with a properly chosen
template spectrum J(x) thus indicates the velocity
shifts at which a similar contribution appears in the
spectrum (cf. e.g. Simkin 1973, Hill 1993).2

An ideal template J should contain the same lines
in the same ratios of their strengths as the spectrum
of component to be measured. In practice an ob-
served spectrum of a star of similar spectral type
or a synthetic spectrum from a model-atmosphere
are used. Fortunately, experience shows that cross-
correlation is not that sensitive to the choice of the
spectral type of the template spectrum. Neverthe-
less, the template spectrum should be known a priori.

1The IP-address of computer(s) for which the access is re-
quested should be sent (e.g. via the author’s e-mail address
given above in heading) to register and to get on the list of
authorized users.

2The differences of the spectra from their continua are cross-
correlated in practice to subtract large constants from the
integral.
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Fig. 1. Example of cross-correlation –
synthetic spectrum constructed as a su-
perposition of lines of two components
and a noise (the upper curve) correlated
with an ideal line-profile (middle spec-
trum) gives a curve with amplitudes and
positions of local maxima corresponding
to the strengths and RVs of lines of the
components (marked by vertical abscissae
at the bottom curve), while the noise is
smeared out by the integration.

This can be quite difficult task to estimate for a faint
companion.3

A generalization of this method is a two-dimensional
cross-correlation

F (v1, v2) =

∫

I(x)[J1(x− v1) +J2(x− v2)]dx , (3)

enabling to choose templates corresponding to dif-
ferent spectral types for the primary and secondary
component (cf. Zucker and Mazeh 1994, Zucker et al.
1995).

Other shortcomings of the cross-correlation tech-
nique are the facts that the cross-correlation profile
is broadened due to widths of both the observed spec-
trum and the template4 and that some side-peaks
may arise in the cross-correlation from coincidence
of mutually non-corresponding lines in the observed
spectrum and in the template.

2.1.2 Method of broadening function

The above mentioned shortcomings of cross-correlation
method are well analyzed by Rucinski (2002), who in-
troduced a method of broadening function (Rucinski
1992) to overcome them. In this method, the broad-
ening function B(x) is calculated to satisfy the rela-
tion

I = B ∗ J (4)

between the template and the observed spectrum.
If the observed spectrum corresponds to a Doppler-
shifted template or to a superposition of them for each
component, then B is a shifted Dirac delta-function,
or a sum of them. One or more components may also
correspond to a broadened template spectrum (e.g.

3The initial motivation for Fourier disentangling was an
attempt to overcome this problem using a kind of cross-
correlation of spectra of the same binary obtained at different
phases.

4Spectra of stars with small rotational v sin i are thus prefer-
able templates and attempts to make them more similar to
the spectra of measured components by numerical rotational
broadening spoil the information offered by the final cross-
correlation.

due to a rotation broadening). In favourable cases
when lines of I are wide and lines of J are narrow,
B will be a Doppler shifted broadening profile. For
a given I and chosen J , Eq. (4) can be solved with
respect to B using e.g. the method of singular-value
decomposition. Position of peak of B gives again the
information about the instantaneous Doppler-shift of
the observed spectrum. The shape and especially the
width of peak of B, which unlike F in Eq. (2) is not
quadratic in the line profile, can yield also an infor-
mation about the broadening of lines in I . However,
the problem of the proper choice of the template is
still opened in this method and, at least equally im-
portant as in the method of cross-correlation.

2.2 Methods of decomposition of spec-
tra

2.2.1 Direct decomposition

It is important to distinguish contributions of indi-
vidual components of a multiple stellar system to its
common spectrum not only to be able to measure the
RVs and to solve for orbital parameters, but also to
find the physical characteristics of atmospheres of the
stars and to put them into context with their masses
and evolutionary status. An exceptional opportunity
is yielded by eclipsing binaries for which spectrum of
one component can be obtained during a total eclipse
and the other spectrum can be found as its difference
from spectrum obtained out of eclipse. However, for
majority of stellar systems some more sophisticated
methods must be used. The most straightforward
of them is the method of direct subtraction involved
by Ferluga et al. (1991, 1997), in which two spectra
Ia, Ib of a binary obtained at different phases (best
of all at the opposite elongations, at extremes of RVs
va,b of both components) are used. If the spectra of
individual components are J1, J2, the relation

Ia(x) = J1(x − v1a) + J2(x − v2a) , (5)

Ib(x) = J1(x − v1b) + J2(x − v2b) , (6)
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should be valid. From here we can calculate both
spectra recurrently

J1(x) = J1(x − v1a + v1b + v2a − v2b) − (7)

−Ia(x + v1b + v2a − v2b) + Ib(x + v1b) ,

J2(x) = J2(x − v1a + v1b + v2a − v2b) + (8)

+Ia(x + v2a) − Ib(x − v1a + v1b + v2a) ,

starting from a wavelength, where the spectra of both
components can be approximated by continuum, and
proceeding in positive or negative direction of the
logarithmic wavelength variable x (depending on the
sign of the expression v1a − v1b − v2a + v2b) toward
groups of spectral lines.

This straightforward method clearly shows an ob-
stacle, which is in principle a problem also for later
more sophisticated methods. The region of values
of x covered by each exposure contains information
about spectra of individual components in regions
shifted for v1,2, so that the information on both spec-
tra is available only in the overlap of both regions. To
be able to separate both spectra, one must add the
missing information about the spectrum of the other
component, usually the assumption that it is a pure
continuum without any line. However, this can be a
source of error, which may then spread also inside the
region where the solution should be well determined.

The main disadvantage of this method is the fact,
that owing to the recurrent procedure of solution the
influence of random observational noise (which should
be added on the right-hand sides of Eqs. (5) and (6))
is cumulative, so that after passing a group of spectral
lines the solution can deflect from the correct value of
the continuum. The influence of the noise can be re-
duced by averaging results of solutions obtained from
a larger number of pairs of exposures. However, this
suggests to develop a method searching ab initio for
the best fit to a higher number of observed spectra,
so that the solution J1,2 of corresponding system of
linear equations of type (5) would be overdetermined.

2.2.2 Method of tomographic separation

A method for decomposition of a larger number of ob-
served spectra of a binary (with known RVs) was in-
troduced by Bagnuolo and Gies (1991). Their method
is based on the mathematical equivalence of this task
with the problem of image reconstruction in tomogra-
phy. The superposition of Doppler-shifted component
spectra at different orbital phases can be treated as
projection of two parallel linear objects (e.g. photo-
graphic spectrograms) viewed from different angles.
Any standard numerical method of tomographic re-
construction should thus be able to calculate the dis-
tribution of intensities (or opacities) in this object of
dimension 2 × N from a higher number of exposures

(each one consisting typically of N pixels) if a suf-
ficient coverage of viewing angles / orbital phases is
available – cf. Fig. 2.5

The observational noise in individual exposures can
thus be diminished by the averaging tendency of this
method. The disadvantage of needing to know the
RVs first is common for both mentioned methods
of decomposition. However, complementing this ap-
proach with the method of cross-correlation, it is ob-
vious that both the decomposition of the spectra and
the measurement of RVs (and solution of orbital pa-
rameters) should be possible in an iterative process,
without the ad hoc choice of the template spectrum.

2.3 Method of simple disentangling of
spectra

The first method enabling simultaneous decomposi-
tion of the spectra of binaries and measurement of
their RVs, or actually directly the solution of or-
bital parameters was published by Simon and Sturm
(1994).6

The decomposition of the spectra is solved by Si-
mon and Sturm (similarly as in the methods by Fer-
luga or Bagnuolo and Gies) directly for 2M values of
spectral fluxes IA and IB of components A and B at
individual values of the independent variable x (here
M corresponds to the number of pixels in the typical
exposure which is typically of the order 103). A set
of N × M linear equations
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is obtained for these unknown values, where N is the
number of exposures (it must be N ≥ 2). There
are N subvectors I(tl) of dimension M with spectra
observed at times tl|

N
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(10)

of dimension M × M on the left-hand side have the
only nonzero elements equal to 1 shifted from the

5The equivalence of both mathematical problems can be
used also in the opposite direction, it means that numerical
methods for spectra decomposition could be applied for com-
puter tomography as well (cf. Hadrava 2001a).

6They also introduced for their method the name ‘disen-
tangling’, which is used here to denote the problem in this
complexity.
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Fig. 2. Principle of tomographic separa-
tion – projections of spectra of individual
components (the two spectra in the back)
into different directions correspond to dif-
ferent Doppler shifts in different phases
(the three spectra in the foreground).

main diagonal for a number of pixels corresponding
to the values vj(tl) of Doppler shift of component
j|Bj=A at time tl. Simon and Sturm solved this set of
equations which has a sparse matrix but of very high
dimension using the method of ‘singular value decom-
position’. This method has been applied on real data
in several studies (e.g. Sturm and Simon 1994, or
Simon et al. 1994). It could be mentioned that the
method was tested also by Hynes and Maxted (1998)
using some simulated data.

Despite the fact that the decomposition of the spec-
tra is the more difficult part of the disentangling, in-
cluding the solution of orbital parameters into the
same procedure represents an essential qualitative ad-
vance in the interpretation of the stellar spectra. An
ideal procedure of any interpretation would be to
fit the observational data by a complete theoretical
model and to estimate, how far the conclusions of the
study are determined by the original observations. If
this task is split into subsequent steps like the de-
termination of RVs in individual exposures first and
the solution of RV-curves only after, the information
about the decisive power of the source data is partly
lost in the questionable reliability of the intermediate
results. This is a reason to prefer the direct solution
of orbital parameters instead of disentangling of com-
ponent spectra together with their RVs7 and the same
strategy leads us to consider a further generalization
of the method of disentangling to include simultane-
ously some other effects, like the line-profile variabil-
ity. At the same time, the user must be aware that
the choice of a particular model to fit the data may
be biased and even good results do not exclude that
some other model may better explain the same data
or data enriched by some additional observations.

7Such an option may be preferable if the spectra contain
a component which need not follow any orbital motion, like
an absorption in gaseous streams projected on photospheres of
components in interacting binaries.

2.4 Fourier disentangling and its gen-
eralizations

Unlike the approach by Simon and Sturm, which is
based on the decomposition of spectra in the wave-
length domain, KOREL uses the least square fit of
Fourier transforms of observed spectra (Hadrava 1995,
cf. Section 2.4.1), which makes the solution numeri-
cally easier and which thus enables further generaliza-
tions (see e.g. Hadrava 1997, 2004a and Sections 2.4.3
and 2.4.5). The mathematical basis of the present
method is analogous to the cross-correlation tech-
nique, however, the basic difference from the stan-
dard cross-correlation (e.g. Hill 1993) or its two-
dimensional generalization (Zucker and Mazeh 1994)
is that in KOREL all spectra at different phases of
the same variable star are mutually compared and
decomposed instead of performing cross-correlation
of each spectrum of the variable separately with an
ad hoc chosen standard. Numerous applications of
this method to real data have been recently reviwed
by Holmgren (2004).

2.4.1 Principle of Fourier disentangling

Let us suppose that a multiple stellar system consists
of n stars and that the spectrum Ij(x)|nj=1 of each
component is constant in time (i.e. it has no intrin-
sic physical or geometric variability) apart of being
Doppler shifted according to the instantaneous radial
velocity vj(t) of the star j at the time t. The com-
posite spectrum observed at time t can be then ex-
pressed as a sum of convolutions (in the logarithmic
wavelength-scale given by Eq. (1)) with correspond-
ingly shifted Dirac delta-functions,

I(x, t) =

n∑

j=1

Ij(x) ∗ δ(x − vj(t)) . (11)

Comparing such spectra obtained at different times,
we would like to find what is the same for all of them,
i.e. the spectra Ij(x) of the components, and what
is changing, i.e. the instantaneous RVs vj(t). This
is in principle possible if we have more than n spec-
tra obtained at different RVs. Assuming the RVs to
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be known, this huge set of linear equations can be
solved with respect to Ij(x) and the observed spec-
tra can thus be decomposed. The experience from
the cross-correlation method shows, that it is numer-
ically advantageous to treat Eq. (2) also as a convo-
lution (taking appropriate inversions of the involved
functions) and to perform its calculation by Fourier
transform. In the problem of spectra decomposition
the Fourier transform (x → y) of Eq. (11) reads

Ĩ(y, t) =

n∑

j=1

Ĩj(y) exp(iyvj(t)) , (12)

i.e. it simplifies the task essentially, because the huge
set of linear equations splits now into many simple
systems of dimension equal to the number of compo-
nents in the observed system. The solution is similar
to quantum mechanics, where any linear operator can
be equivalently written in different representations,
however, it is easier to calculate its functions and in
particular its inversion in a reducible representation.
This is the basic trick which makes the Fourier disen-
tangling more versatile compared to the wavelength
domain disentangling, despite in principle both meth-
ods are equivalent and their general features, which
are easier to understand in one representation are in
fact valid for the other as well.8

Before explaining the procedure of solution of Eqs.
(11) or (12), let us generalize them for purposes of
later development of the method. In view of the pos-
sibility to involve a broadening of line-profiles sim-
ilarly as the Doppler shifts by another convolution
with a corresponding broadening profile (cf. Eq. (4)),
we can generalize Eq. (11) to

I(x, t) =
n∑

j=1

Ij(x) ∗ ∆j(x, t, p) , (13)

and its Fourier transform to

Ĩ(y, t) =

n∑

j=1

Ĩj(y) ∆̃j(y, t, p) , (14)

where ∆j are some general broadening functions, which
may involve now not only the Doppler shifts, but pos-
sibly also some line-profile broadenings at the time t;
∆̃j are their Fourier transforms. These functions de-
pend on some parameters p characterizing either the

8It is obvious that for the special case n = 2, Eqs. (11)
or (12) are equivalent with Eq. (9). Consequently, it is incor-
rect, what Simon and Sturm (1994, p. 291) claim, that unlike
the problem of tomography, which is analytical by its nature,
the decomposition or disentangling is the algebraic one. Both
these problems, as well as others related with them, can be
formulated analytically and solved algebraically in a chosen
numerical representation. The generalizations of disentangling
given below could be, in principle, done also in the wavelength
domain as it was done in the pioneering work by Simon and
Sturm. However, the numerical solution would be then more
difficult.

orbital motions of the components or physical and
geometric conditions of formation of their spectra.

The principle of disentangling consists in minimiza-
tion of the sum of integrated squares of differences
between the observed and model spectra (on the left
and right hand sides of Eq. (13), respectively)

0 = δ

N∑

l=1

∫
∣
∣
∣
∣
∣
∣

I(x, tl) −

n∑

j=1

Ij(x) ∗ ∆j(x, tl, p)

∣
∣
∣
∣
∣
∣

2

dx,(15)

which is supposed to be due to observational noise
in I(x, t). This expression implicitly assumes, that
the noise is the same for all wavelengths. Only lim-
ited spectral regions are available in practice, which
means that outside the corresponding range of x we
take the spectra with zero weight. The minimization
is performed with respect to the component spectra
Ij(x) (which gives the decomposition of the spectra)
as well as to the orbital parameters (corresponding
to the solution of RV-curves with implicitly involved
RV measurements) or other free parameters p.

According to the Parseval theorem, the norm of a
function is proportional to the norm of its Fourier
transform
∫

|f̃(y)|2dy =

∫

f̃∗(y)

∫

exp(ixy)f(x)dxdy =

=

∫

f(x)

[∫

f̃(y) exp(−ixy)dy

]∗

dx =

= 2π

∫

|f(x)|2dx , (16)

where the asterisk ∗ denotes complex conjugate. Con-
sequently, the condition (15) can be equivalently re-
written as minimization (i.e. zero variation) of sum
of integrals of the Fourier transforms

0 = δ

N∑

l=1

∫
∣
∣
∣
∣
∣
∣

Ĩ(y, tl) −

n∑

j=1

Ĩj(y)∆̃j(y, tl, p)

∣
∣
∣
∣
∣
∣

2

dy . (17)

This form of the condition assumes implicitly, that
the noise is white, which need not be always the case,
as we shall discuss later. It can thus be better to in-
volve some weights wl(y) of individual Fourier modes
and to write the condition in the form

0 = δS , (18)

where

S = (19)

=

N∑

l=1

∫
∣
∣
∣
∣
∣
∣

Ĩ(y, tl) −

n∑

j=1

Ĩj(y)∆̃j(y, tl, p)

∣
∣
∣
∣
∣
∣

2

wl(y)dy .

The equation for decomposition of spectra can be
obtained by varying S with respect to individual Fou-
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rier modes,9

0 =
∂S

∂Ĩ∗m(y)
= (20)

= −

N∑

l=1



Ĩ(y, tl) −

n∑

j=1

Ĩj(y)∆̃j(y, tl, p)





. ∆̃∗
m(y, tl, p)wl(y) =

=

n∑

j=1

[
N∑

l=1

∆̃j(y, tl, p)∆̃∗
m(y, tl, p)wl(y)

]

Ĩj(y) −

−
N∑

l=1

Ĩ(y, tl)∆̃
∗
m(y, tl, p)wl(y) ,

which is obviously a set of n linear equations for each
Fourier mode separately. To optimize the solution
with respect to the parameters p we can use the con-
ditions

0 =
∂S

∂p
= (21)

= −2<

N∑

l=1

∫


Ĩ(y, tl) −

n∑

j=1

Ĩj(y)∆̃j(y, tl, p)





.

n∑

m=1

Ĩ∗m(y)
∂∆̃∗

m(y, tl, p)

∂p
wl(y)dy .

However, the dependence of ∆̃j on p can be generally
quite complicated and consequently also the solution
of these equations may be difficult. It can thus be
easier to minimize directly the expression for S in
the form (19) using some numerical method of opti-
mization, like the simplex method.

Let us note that despite the determination of RVs
and subsequent solution of RV-curve is an obsolete
procedure compared to the disentangling of spectra,
it may be still useful to determine RVs for individual
exposures first to enable their combination with older
data from literature or with solution of light-curves.
Having already disentangled a set of spectra, it is pos-
sible to measure RVs of the component stars in each
of them by fitting the spectrum as a superposition of
the disentangled spectra Doppler-shifted for velocities
independent of the found orbital parameters.

2.4.2 Simple Fourier disentangling

Let us illustrate the Fourier disentangling first in the
simple case, which is equivalent to the above explained
method by Simon and Sturm (cf. Section 2.3), with
the only generalization that the observed system need

9Because Ĩ are complex values, the partial derivatives of S

must be calculated either independently with respect to their
real and imaginary parts, or with respect to Ĩ and its complex
conjugate as independent variables.

not be a binary only, but it may consist of n stars.
Then ∆-functions corresponding to the pure Doppler
shifts are given by

∆j(x, tl, p) = δ(x − vj(tl, p)) , (22)

their Fourier transforms are

∆̃j(y, tl, p) = ejl ≡ exp(iyvj(tl, p)) , (23)

and consequently (if we skip the weights wl(y) for
simplicity) Eq. (20) reads

n∑

j=1

[
N∑

l=1

ejle
∗
ml

]

Ĩj(y) =
N∑

l=1

e∗mlĨ(y, tl) . (24)

This set of equations can be solved with respect to
Ĩj(y) whenever the matrix (with indices j, m) on the
left-hand side is non-singular.

It is obvious that the singularity occurs always for
y = 0 (which can be seen also in Eq. (12)), when this
equation reduces for all m to a single condition

n∑

j=1

Ĩj(0) =
1

N

N∑

l=1

Ĩ(0, tl) (25)

for the sum of mean values of the component spec-
tra to give the mean value of the observed spectra.
It means, that the continua cannot be directly de-
composed, because they are not influenced by the
Doppler shifts. An indirect method of distinguish-
ing the contributions to the continuum is described
in Section 2.4.4. This problem will be discussed in
detail in Section 2.5. It can happen also for non-
zero Fourier modes that the matrix is nearly singu-
lar and the solution is thus unstable. This danger is
higher for low modes, for which the Doppler effect is
smaller. These modes can be more influenced by er-
rors in rectification of spectra. This is why it may be
better to filter them out using some weights wl(y)
as additional multiplicators in the integrals in ex-
pression (19). These multiplicators will not influence
the decomposed spectra directly by the amplitudes
and phases of individual Fourier modes but through
the optimal values of the parameters p. It is possi-
ble in KOREL to cut out a chosen number of lowest
modes.10

As mentioned in the previous Section, limited ranges
with a finite sampling are used in practice both in the
wavelength domain as well as in the domain of the
Fourier transforms of spectra. The highest efficiency
of numerical calculation is achieved if the numbers

10Ilijić et al. (2000) advocate a filtering of high frequency
noise from spectra before the disentangling. It would be possi-
ble to involve the filtering directly into the procedure of disen-
tangling, if such a need will be confirmed. The present version
of KOREL does not allow it not to complicate much its use.
Some filtering of high frequencies is performed already by the
interpolation of the original data into the chosen scale of x.
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of bins in both representations are comparable. The
Fourier transform between these limited sets of dis-
cretized data points assumes a periodic repeating. It
means that a spectral line which disappears at some
phase behind one edge of the spectral region to be
decomposed is expected to appear at the other. Be-
cause this will not generally happen (unless by chance
a similar line exists at the other edge), solution of
decomposition cannot fit at the edges all observed
spectra with and without the line. This leads to er-
rors propagating from edges toward the middle of
the decomposed range, as described by Ilijić et al.
(2000). To prevent these errors the spectral regions
chosen for the disentangling should have continua11

without spectral lines at both edges of the decom-
posed spectral range, best of all wider than the ex-
pected amplitude of RVs of the components. To fa-
cilitate the choice of convenient spectral range code
PREKOR has been written, which interpolates from
the data-files with individual exposures into chosen
regions with proper discretization and displays the
result to enable a visual check of the input data for
KOREL. It may be difficult to satisfy the demand
for pure continua at edges of the region when disen-
tangling is applied to late-type stars. In such a case
the edge defects can be partly suppressed by the so
called tapering of the signal towards the edges (or the
hemming of signal window), i.e. a smooth suppress-
ing the signal of source data in narrow strips on both
edges towards the continuum, as it is recommended
also in the technique of cross-correlation. This trick
is in fact similar to the choice of slightly higher di-
mension of decomposed vectors IA,B on the left-hand
side of Eq. (9) of the method by Simon and Sturm
than is the dimension of the source data I(tl) on the
right-hand side.

2.4.3 Line-strength variations and removal of
telluric lines

The simplest generalization of the disentangling is to
abandon the assumption of constant component spec-
tra and to admit a change of strength of lines of some
component. The original motivation for this step was
the experience that in some binaries errors of RVs in-
creased significantly close to conjunctions where an
eclipse could be expected. If the contribution of one
eclipsed star is missing in the spectrum of the whole
system, the spectra of the remaining are more pro-
nounced and their sum cannot be fitted so well as a
superposition of lines with the same depths as out of
the eclipse.

Let us thus generalize Eqs. (22) and (23) by involv-

11Naturally the continua on both edges of each spectral re-
gion should have the same level to prevent also a discontinuity
in jump between the edges of decomposed spectra. This can be
ensured by the rectification of input spectra to their continua.

ing time-variable multiplicative line-strength factors
sjl = sj(tl) for each component star, i.e.

∆j(x, tl, p) = sjlδ(x − vj(tl, p)) , (26)

the Fourier transforms of which read

∆̃j(y, tl, p) = sjlejl . (27)

In this case Eq. (20) gets slightly more complicated
form compared to (24), namely

n∑

j=1

[
N∑

l=1

wl,X(y)sjlejlsmle
∗
ml

]

ĨX,j(y) =

=

N∑

l=1

wl,X(y)smle
∗
mlĨX (y, tl). (28)

Here the subscript X refers to different regions of
the observed spectra, each one being characterized
by its initial wavelength x and its dispersion (in the
value of RV per one bin of the sampling in x). The
weights wl,X (y) could be, in principle, different for
each Fourier mode y in each spectral region X of the
exposure l. However, in the present version of KO-
REL, we choose12

wl,X(y) = wl,Xw(y) . (29)

The weight wl,X of each exposure can be chosen,
e.g., in dependence on the number of photon counts.
The spectral filter w(y) enables to cut out the low-
est Fourier modes, as mentioned at the note 10 on
page 21.

Following (27), S given by (19) is bilinear also in
coefficients sjl. Hence, varying with respect to sml,
we get from Eq. (21) for each chosen exposure l the
following set of linear equations

n∑

j=1

<

[
∑

X

∫

wl,X (y)ĨX,j(y)Ĩ∗X,m(y)ejle
∗
mldy

]

sjl =

= <
∑

X

∫

wl,X(y)ĨX (y, tl)Ĩ
∗
X,m(y)e∗mldy (30)

for these coefficients corresponding to different com-
ponents. It is obvious from Eqs. (14) and (27) that
for each component its spectrum Ĩj(y) and strengths
sjl are defined by the observations up to a reciprocal
multiplicator. This must be fixed by a normalization
condition.

If strengths of some components are fixed, their
terms must be transferred from the left- to the right-
hand side of this equation. Because the coefficients sjl

12The weights wl,X are part of input data for KOREL. They
can be chosen before running PREKOR and altered for selec-
tion of different regions X if these are merged from different
runs of PREKOR. The filter w(y) is taken as the same function
of the order of Fourier harmonic for all l,X which means that
its scale in wavelengths of the original spectra is dependent on
sampling in X.
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are generally still quite numerous (but less in number
than the Fourier modes of the component spectra), it
is advantageous to solve for them directly from equa-
tions (30) before optimizing S with respect to either
vj(tl) or p, in which it is non-linear.

It is important to hold in mind that the solutions of
orbital elements (or individual independent radial ve-
locities), the decomposition of the spectrum and the
solution of component strengths are inter-related and
their self-consistent solution should be found. To find
this solution, an iterative procedure is used if all these
kinds of unknowns are allowed to converge. However,
there is no guaranty that this scheme will converge
from every arbitrarily chosen initial condition. In-
stead, it can achieve some false local minimum by
suppressing lines in exposures for which true RVs dif-
fer from the instantaneous approximation or orbital
parameters. It is thus often more efficient to approx-
imate the solution of spectra and orbital parameters
with fixed strengths (either found in some other spec-
tral region, where lines of given components are bet-
ter pronounced, or simply let them equal to one) first
and to allow them to converge for a final tuning of
the solution only.

The option of line strength solution enables a de-
composition of the telluric lines (or, in principle, also
some interstellar lines) from the observed spectra.
Exactly speaking, the telluric component of the spec-
trum is not additive, but multiplicative, because the
observed spectrum

Iobs(x, t) = exp(−τ(x, t))I0(x, t) (31)

is proportional to the true composed spectrum I0 of
the studied stellar system as seen outside the Earth’s
atmosphere. However, this formula can be approxi-
mated as

Iobs(x, t) = I0(x, t) + Itell(x, t) , (32)

where telluric spectrum

Itell(x, t) = (e−τ(x,t) − 1)I0(x, t) '

' −τ(x, t)I0(x, t) (33)

is a negative contribution in lines with no continuum.13

The optical depth τ and hence also strength of telluric
lines is very sensitive to the air-mass and humidity
at each exposure. Because usually we are not inter-
ested in the true telluric spectrum τ(x, t) but only in
how to eliminate its influence, we can decompose its
lines traveling with the annual motion of the Earth as
they are imprinted on the mean I0(x). A small dis-
crepancy may arise only with telluric lines falling on
steep slopes of line profiles in I0(x), the strength of
which in ratio to the strengths of lines falling to con-
tinuum of I0(x) can differ in each exposure depending
on the instantaneous radial velocities.

13The small telluric absorption in continuum is eliminated
by the rectification of the observed spectra.

2.4.4 Line photometry

Taking into account the connection between forma-
tion of continuum and spectral lines in stellar atmo-
spheres, the above described method for calculation
of line-strength variations yields a possibility to find
differential magnitude changes between the compo-
nents and also to determine the ratio of component
continua in the case that the intensity variations are
caused by some overall darkening of a component e.g.
by an eclipse. Let in the ‘normal’ state of a binary
(i.e. out of eclipse) the intensities I1,2 of components
continua be normalized

I1 + I2 = 1 . (34)

The line depths L1,2 of the components found by solu-
tion of Eq. (28) are expressed in units of this common
continuum with respect to which the input spectra
were rectified. If in another exposure the spectrum of
component ‘1’ is decreased by factor z× (see Fig. 3),
then the decomposed line depths of both components
referred to the instantaneous common continuum will
be changed by factors s1,2 to values

s1L1 =
zlinL1

zcontI1 + I2
(35)

s2L2 =
L2

zcontI1 + I2
. (36)

The factor zlin can thus be simply expressed as

zlin =
s1

s2
, (37)

and assuming that the factor z in continuum is the
same, zcont ≡ zlin, the ratio of continua intensities
can be also found as

I1

I2
=

1 − s2

s1 − 1
. (38)

Obviously, if z < 1, then s1 < 1 and s2 > 1. This
behavior can help to distinguish the variations caused
by the ‘geometrical’ reasons (or their equivalent) from
intrinsic variations of line intensities of a component
or from the observational noise.

In the usual case of N exposures, the factors zl|
N
l=1

of the darkenings of the component ‘1’ can be cal-
culated independently for each exposure from sjl ac-
cording to Eq. (37). The ratio of continua intensities
can be then obtained by least square fit of Eqs. (35)
and (36) e.g. in logarithmic (i.e. magnitude) scale,
i.e. by solving the condition

0 = δ
∑

l

[ln s2l + ln(1 + I1(zl − 1))]
2

(39)

for the variation δI1.
The applicability of this simple estimate of ratio

of continua from line photometry is limited by the
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Fig. 3. Continuum and line strengths of uneclipsed components (left) and in the primary eclipse (right).

above mentioned assumption that the change of in-
tensity is the same for the line and the continuum
and certainly also by assumption that only two com-
ponents are present as well as that there are no in-
trinsic changes of line profile shapes. Practical ex-
perience indicated that this is not exactly true even
for eclipsing binaries, not to speak about stars where
intrinsic line-profile variability can be expected due
to ellipticity, radial or non-radial pulsations, spots or
reflection. The reason can be simply understood in
terms of limb-darkening variations within the line-
profile. If the limb darkening is different in line and
in continuum, the portions z of eclipsed light in nu-
merator and denominator in Eq. (35) are different
and cannot be solved together with I1,2 from s1,2,
unless their relation is known from theory. On the
other hand, fitting of s1,2 by a more detailed model
of eclipse light-curves in each x can reveal the limb-
darkening variations within the line and thus yield
information about the structure of atmosphere of the
eclipsed component.

As shown in a preliminary study of this problem
(Hadrava and Kubát, 2003), the variations of line pro-
file across the stellar disk are generally very complex,
so that even the often used expression of rotational
broadening as a convolution with some rotational pro-
file is in fact wrong. However, some relatively good
approximations can be developed from the theory of
stellar atmospheres, which will simplify the task to a
solvable and quite powerful method.

If source-function in a plane-parallel atmosphere
can be expanded into a Taylor-series in monochro-
matic optical depth

S(x, τ) =
∑

k

1

k!
Sk(x)τk , (40)

the surface intensity is polynomial in directional co-
sine µ with coefficients Sk,

I(x, µ)|τ=0 =
∑

k

Sk(x)µk . (41)

In the Milne-Eddington approximation these sums re-
duce to the first two terms, so that the distribution
of intensity over the visible stellar disk

I(x, µ)|τ=0 = S0(x) + S1µ = (42)

= I(x, 1)|τ=0(1 − u + uµ)

corresponds to linear limb darkening

u =
S1

S0 + S1
, (43)

which is according the theory u = 3
5 for the light

integrated in frequencies and according to solutions
of observed light-curves around u ' 0.3 for the visible
light in wide frequency bands, i.e. in continuum.

Suppose that in all geometric depths (radii of the
star r) the monochromatic opacity across a line-profile
is proportional to the opacity in continuum with the
same line-profile function φ dependent on the fre-
quency x only.14 Then also the monochromatic op-
tical depth τ is proportional to the optical depth in
continuum,

τ(x, r) = [1 + φ(x)]τcont(r) . (44)

If conditions of LTE are satisfied for studied lines,
S is a smooth (Planckian) function of x, so that its
change within the line profile can be neglected and
its slope in monochromatic optical depth varies only
due to the opacity profile, S1(x)[1 + φ(x)] ' S1,cont.
The linear limb-darkening is thus decreasing toward
the center of line

I(x, µ)|τ=0 = S0,cont + S1,cont[1 + φ(x)]−1µ , (45)

and the line-contribution to the spectrum

[I(x, µ) − Icont(µ)]τ=0 = −S1,cont
φ(x)

1 + φ(x)
µ , (46)

which is negative, has distribution over the stellar
disk corresponding to limb-darkening

ulin = 1 . (47)

It means that at initial phases of an eclipse when only
a part of disk edge is hidden, the light missing in line
represents larger portion of the overall flux in that
frequency than the light missing in the continuum

14This is not true generally. However, we can take the as-
sumption of separability in variables r and x as the first ap-
proximation at least in a small region where the core of the
line is formed.
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Fig. 4. Schematic dependence of limb
darkening across line-profile of an absorp-
tion line. Intensity is low on edge of stellar
disk (µ = 0) both in continuum and the
line, but it is more brightened toward the
disk centre (µ = 1) in continuum than in
the line, because the radially escaping pho-
tons in continuum originate in deeper and
hotter layers of the atmosphere. The cen-
tral parts thus contribute to the formation
of spectral lines with increasing weight.

(zlin < zcont), so that in some cases line-strengths
of both components can be enhanced. The z-factors
from Eqs. (35) and (36) for an eclipse must be thus
modelled simultaneously for the continuum and lines
with their corresponding limb-darkenings. The ge-
ometric parameters of the eclipse can be converged
to fit the observed line-strength variations like in the
standard procedure of light-curve solution. However,
despite such a procedure is a significant improvement
compared to the standard methods, it is still limited
by several assumptions, which are never exactly sat-
isfied.

2.4.5 Disentangling with intrinsic line-profile
variations

In view of the fact that components of binaries are
often subjected to different kinds of variations and
asymmetries (already mentioned ellipticity, reflection,
spots, radial as well as nonradial pulsations), which
are manifested as line-profile variations, the method
of disentangling needs a further generalization. If
some of these effects becomes non-negligible, the ba-
sic equation (11) must replaced by a more detailed
expression

I(x, t) =

n∑

j=1

∫

s

µIj(x, s, µ, t) ∗ δ(x − vj(s, t))d
2s, (48)

for the spectral flux as integral of monochromatic in-
tensities over the visible parts of surfaces s of indi-
vidual components j, each one Doppler shifted ac-
cording to the local radial velocity, which can reflect
now not only the orbital motion, but also rotation
and pulsation of the stellar atmosphere. The un-
known functions Ij depend now on a larger number of
variables than the observed spectra on the left-hand
side, equally as the velocities vj . Consequently these
functions cannot be reconstructed from the observed
spectra without some additional conditions like it was

in the previous case of surface homogeneity. Such a
condition can be based either on some geometric or
physical assumption. For a suitable choice of some
sets of functions for Ij and vj , their free parameters
can be adjusted to fit the observed spectra. However,
it must not be forgotten that the solution is model de-
pendent and that in principle it cannot be excluded
that some other model may fit the data equally well
or even better.

Quite generally the local intensity can be a linear
combination of a few spectral functions Ik

j

Ij(x, s, µ, t) =
∑

k

fk
j (s, µ, t)Ik

j (x) (49)

with coefficients fk
j whose dependence on the posi-

tion on the star-surface s, directional cosine µ and
time t can be modelled up to a few free parameters.
Substituting this into Eq. (48) we arrive at equation

I(x, t) =
∑

j,k

Ik
j (x) ∗ ∆k

j (x, t, p) , (50)

which is formally identical with (13), apart of the fact
that each component j can be now characterized by
several spectra Ik

j (x) (e.g. corresponding to different
terms in the expression (41) for the limb darkening,
or to spectra inside and outside a spot etc.) with
different spectral broadenings

∆k
j (x, t, p) =

∫

s

µfk
j (s, µ, t)δ(x − vj(s, t))d

2s . (51)

Differences in these broadenings can ensure that the
corresponding spectral functions can be decomposed
from the observations using the general procedure de-
scribed in Section 2.4.1.

2.4.6 Broadening by pulsations

One of the simplest generalizations of disentangling
for a case of intrinsic line-profile variations, which was
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outlined in the Section 2.4.5, is the problem of pul-
sating stars. Suppose first, that the atmosphere of
a spherical star moves as a whole radially (with re-
spect to its center) with instantaneous velocity vp(t).
In agreement with conclusion (47) let us simplify the
sum (49) to a single term linear in the directional co-
sine µ = cosϑ, which is a function of the projected
distance r = R sin ϑ from the centre of stellar disk

Ij(x, s, µ, t) = sjµ Ij(x) . (52)

The total velocity of a projected surface element µd2s
= rdrdϕ is the velocity vj(t) of the star as before, plus
projection µvp of the pulsational motion into the line
of sight. The broadening function given by (51) thus
reads15

∆j(x, tl, p) = 2πsjl

∫

µδ(x − vj(tl) − µvp(tl))rdr =

=
2πR2sjl

v3
p(t)

[
(x − vj(tl))

2
]

x∈(vj ,vj+vp)
. (53)

Its Fourier transform reads

∆̃j(x, tl, p) =
2πiR2

v3
p(tl)

sjlejly
−3 (54)

.
[
exp(iyvp(tl))(2 − 2iyvp − y2v2

p) − 2
]

,

it means, that in comparison with Eqs. (23) and (27)
it contains now also additional broadening terms cor-
responding to the line-profile variations.

Similar generalization can be done also for rota-
tional broadening which causes LPVs in elliptic vari-
ables and can thus be found in the data. Non-zero
limb-darkening leads in this case to asymmetry of
lines and it complicates substantially the expression
for ∆ and its Fourier transform, equally as in the case
of non-radial pulsations. However, ∆ can be modelled
and ∆̃ calculated numerically in these cases.

2.5 Normalization of disentangled
spectra

Let us investigate now in detail the obstacle of the
decomposition, which was already mentioned in Sec-
tion 2.4.2 on page 21 and which is immediately obvi-
ous from Eq. (12). If we choose y = 0, the equation
(12) received for the integral mean values

∫
Ijdx re-

duces to a singular system of linear equations

Ĩ(0, t) =

n∑

j=1

Ĩj(0) . (55)

15Here we use the relation rdr = −R2µdµ. The bracket [ ]
in (53) means that the quadratic function inside is multiplied
by the characteristic function of the interval in subscript (or
interval (vj + vp, vj) if vp < 0), i.e. by 1 inside and 0 outside
the interval. Note that if the intensity in the lines is taken
to be homogeneous instead of (47), the pulsational broadening
is linear instead of quadratic and it thus leads to a smaller
amplitude of observed pulsational Doppler shifts.

According to the assumption of invariability of Ij in
the simple disentangling, the mean intensity on the
left-hand side of this equation should not depend on
the time t. Assuming such a dependence to be caused
only by a noise in individual exposures, the left-hand
side can be replaced by its mean value, as it is done in
Eq. (25). However, instead of a set of equations de-
termining uniquely the other Fourier modes of com-
ponent spectra, we have then this single condition
restricting solutions for n values Ĩj(0)|nj=1 only to an
infinite (n−1)-parametric set. In words it means that
constant parts (continua) of the spectra cannot be de-
composed, because they are invariant with respect to
the Doppler shift. The continuum is never constant
in the whole range of frequencies, so that in principle
it should be possible to decompose the spectrum com-
pletely if it were to be available in the whole range
of x with an unlimited precision. From the math-
ematical point of view it would require the use of
additional conditions for limits, limx→±∞ I(x, t) = 0.
In practice the whole spectrum is never available and
its precision is insufficient to determine the Doppler
shifts of continua.16 Usually we decompose limited
parts x ∈ (x1, x2) of the whole spectrum which are
rectified with respect to the local continuum. For
these intervals the mean intensities

Ĩj(0) ≡ 〈Ij〉 ≡

∫ x2

x1

Ij(x)
dx

x2 − x1
(56)

differ from the individual continua Cj . These dif-
ferences can be found by a new rectification of the
decomposed spectra, however the ratios of values Cj

must be estimated from some additional information.17

The uncertainty of Cj is also why KOREL gives the
disentangled component spectra Ij on its output only
relatively, i.e. in the same units used at input and
with an unknown shift of the zero level (and of the
continuum). Because the input spectra for disentan-
gling are supposed to be rectified with respect to the
total continuum (or a pseudocontinuum)

C ≡

n∑

j=1

Cj = 1 , (57)

the output

I ′j(x) = Ij(x) − 〈Ij〉 + 1 (58)

16In fact just such an overestimation of the effect was a short-
coming of the historical paper by Christian Doppler ‘Ueber das
farbige Licht der Doppelsterne...’ which he wrote and pub-
lished in Prague in 1842.

17As it has been mentioned already in Section 2.4.2, the
sets of linear equations (12) may be nearly singular also for
some other low harmonics and due to the limited precision
of the source data their solution may be unstable, especially
if the RVs are not yet well converged. This results in some
long-period waves on the decomposed spectra, which are fre-
quently met during the procedure of convergence of the disen-
tangling. Usually these waves disappear when a better solution
is reached, however, a better rectification of the input spectra
can also help.
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is shifted for this value C = 1 to prevent negative
values in absorption lines and to give an approximate
information about the depths of the lines of individ-
ual components. However, to enable a comparison
of the disentangled spectra with theoretical spectra
from model atmospheres it would be desirable to cal-
culate the component spectra rectified with respect to
their (unknown) individual continua Cj , i.e. to find
the functions Ij(x)/Cj .

The only value we can calculate from the input
spectra is the total mean intensity

〈I〉 =

n∑

j=1

〈Ij〉 . (59)

This value (which is decreased below the level of total
continuum for the ratio of sum of equivalent widths
of lines in the spectral region and the length of the
region) is given at the output of KOREL for each
spectral region. Even if we know, e.g. from a broad-
band photometry, the ratio of colour luminosities

Lj =

∫

Ij(x)φ(x)dx (60)

of the components, it does not tell us directly the ratio
of 〈Ij〉, because Lj are integrated over a broader re-
gion with wavelength-dependent sensitivity φ of the
photometric channels (given by filters/detectors).
Both integrals (56) and (60) are decreased with re-
spect to the levels of continua Cj by the sum of equiv-
alent widths of absorption spectral lines contained in
the corresponding region. However, for disentangling
we usually choose narrow neighborhoods of strong
(mostly absorption) lines, so that the values of 〈Ij〉
can be expected to be sensibly smaller in comparison
with levels of continua Cj , while the photometric lu-
minosities can nearly reach the values of integrals of
the continua18

〈Ij〉 < Cj , Lj ≤ Cj . (61)

Fortunately, the shifts of components’ mean intensi-
ties with respect to their continua can be determined
from the output disentangled spectra

∆j ≡ Cj − 〈Ij〉 = [I ′j(x) − 1]x∈cont. (62)

(cf. Eq. (58)) simply by fitting the level of continuum
in I ′j . These n values should satisfy the bounding
condition which follows from Eqs. (57) and (59),

Q ≡ 1 − 〈I〉 −

n∑

j=1

∆j = 0 , (63)

18The correction could be obtained from model atmospheres.
In the next we will thus suppose that we know the ratio of the
continua Cj from the photometry.

the right-hand side of which is given at the output of
KOREL as the integral of the input spectra. Neglect-
ing this condition, the continuum shift of each disen-
tangled component spectrum could be calculated in-
dependently by a new rectification of the output as
its mean value in the continuum. Such a result could
be then substituted into Eq. (63) to check it preci-
sion. An alternative approach is to solve for all ∆j

simultaneously by minimizing the sum

S ≡
∑

j

wj

∫

[I ′j(x) − 1 − ∆j ]
2 (64)

with the condition (63). Here the weight wj of each
component spectrum can be chosen inversely propor-
tionally to the square of its noise. The minimization
can be done using the standard Lagrange multipliers
method, i.e. solving the set of linear equations

0 =
∂

∂∆j
[S − λQ] = 2wj

∫

[∆j + 1 − I ′j(x)] − λ .(65)

The solution reads

∆j =

(∫

[I ′j(x) − 1] +
λ

2wj

)

/

∫

1 , (66)

where

λ
∑

j

1

2wj
= [1 − 〈I〉]

∫

1 −
∑

j

∫

[I ′j(x) − 1] . (67)

Once the shifts ∆j are determined (and continua
Cj chosen), the rectified component spectra can be
calculated according to

Ij(x)/Cj = 1 + (I ′
j(x) − 1 − ∆j)/Cj . (68)

Note, that a telluric component contributes also by
its ∆j , despite it has Cj ≡ 0 (but its 〈Ij〉 < 0). It
is natural to let the telluric lines be normalized with
respect to the total continuum C.

3 Numerical method

The Fourier transform is calculated in KOREL using
the procedure Fast Fourier Transform (FFT). Conse-
quently, the input spectra must be discretized into 2n

points equidistant in logarithmic wavelength.19 The
shift (vj(t)) of δ-function in Eq. (11) or its generaliza-
tions must be discretized with the sampling frequency
(to give the function exp(iyvj(t)) in Eq. (12) periodic
with the period of the data interval). Consequently,
both vj(t) as well as the minimized sum S given by
Eq. (19) are step functions (in t and p, resp.) in the

19The number of data points in each spectral region is 256
in the PC-version or its multiple by a power of 2 in the work-
station version of the code KOREL.
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numerical representation. To achieve a good resolu-
tion in velocity, it can thus be advantageous to inter-
polate the input spectra into higher sampling density
than the original one read from the detector. The
Fourier transforms of these spectra must be stored
in the computer memory in the course of the solu-
tion. To enable the use of large number of spectra
with high resolution, the spectra can be represented
by several spectral regions only (containing spectral
lines chosen for the solution), each one characterized
by the initial wavelength and step in radial velocity
per one bin. For each spectral region the functions
S are calculated according to Eq. (19) and the corre-
sponding sets of Eqs. (28) are independent. The total
S summed over spectral regions is calculated only for
the purpose of convergence of parameters p.

The spectra are supposed to originate from a multi-
ple stellar system with a hierarchical structure shown
in Fig. 5, where the numbers in circles are indexes of
the star position, numbers in parenthesis give indexes
of the corresponding orbit. The occupation of each
position by a visible component is to be given by spe-
cial key on input. The orbits Nos. 1, 2 and 3 can be
suppressed by the choice of the corresponding period
equal to 0.

The radial velocity of a component is thus given by

vj(t; p) =
∑

o

K(cos(ω + υ) + e cosω) , (69)

where the summation is performed over the orbits
influencing the motion of the star (e.g. orbits Nos. 0,
2 and 3 for the star No. 1; note that the γ-velocity
of the system does not appear in this formula – it
can be specified only after the identification of lines
in the component spectra). The true anomaly υ is
calculated according to

υ = 2arctg

(√

1 + e

1 − e
tg

E

2

)

(70)

from the solution of Kepler’s equation

2π
t − t0 − ∆t

P

(

1−
Ṗ

2

t − t0 − ∆t

P

)

= M = (71)

= E − e sinE

for the time t corrected by

∆t =
∑

o

PK

2πc
(1 − e2)3/2 sin(ω + υ)

1 + e cos(υ)
, (72)

for the light-time effect due to the higher orbits in the
hierarchical system (e.g. orbits Nos. 2 and 3 for stars
Nos. 1 and 2). The pericenter longitude is given by

ω = ω0 + ω̇(t − t0 − ∆t) , (73)

i.e., the secular periastron advance (linear in time)
can be taken into account. Similarly

e = e0 + ė(t − t0 − ∆t) , (74)

K = K0 + K̇(t − t0 − ∆t) , (75)

q = q0 + q̇(t − t0 − ∆t) , (76)

The spectra and times of exposures are usually trans-
formed into the heliocentric system. If not, the higher
orbit can be used to make the corresponding correc-
tion. The secondary component of this ‘solar’ orbit
can be used to remove the telluric lines (in an approx-
imation) from the stellar spectra.

The minimization of S with respect to p is per-
formed by the simplex method adapted from Kallrath
and Linnell (1987).20 Several orbital elements (cf.
Table I), line strengths21 or radial velocities22 can be
chosen from all of them for convergence in one step,
the others being fixed. In each of these ‘large’ steps,
there are performed many simplex transformations.
The number of these ‘small steps’ is 10× the number
of the iterated parameters (at maximum 10 parame-
ters can be converged in one large step). The actual
status of the iteration is displayed on the screen (in
order: No., code of simplex transformation, No. of
the worst simplex point, value of S in this point and
its values of parameters, i.e. in the same way as in
FOTEL). At each simplex step the spectral decompo-
sition is performed first, and then the line-strengths
are calculated (if it is required by the corresponding
key of the star). The self-consistent solution requires
either to repeat these steps, or to store the values
of line-strengths appropriate to the set of orbital pa-
rameters at a particular simplex point. The former
approach is used in the present version of KOREL be-
cause the later would be memory exhausting. To find
an exact self-consistent solution in each step would
be very time consuming, hence only up to 5 itera-
tions of successive spectra decomposition and line-
strengths calculations are performed. The solution
with free line-strengths is usually more sensitive to
local minima in the basic parameters. To prevent
this disadvantage it is recommended to hold the line-
strengths fixed during the simplex solution (unless
it is only tiny tuning of an already found solution)
and to improve them in a subsequent step. Another
possibility is to include some line-strengths (of chosen
components in chosen exposure – e.g. very strong tel-
luric lines or components participating in an eclipse)

20For details see description of the code FOTEL (Hadrava
2004b in this volume), where the same procedure is used.

21Note that either all line strengths for a chosen component
can be calculated using the method described in Section 2.4.3,
or only several of them (e.g. in exposures suspicious to be
taken during an eclipse) using the simplex method.

22For a component which is not tied to an orbital motion –
cf. KEY explained in Section 4.2.
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Fig. 5. The hierarchical structure of the
stellar system. The numbering of compo-
nent stars (in circles) and their orbits (in
parenthesis) as used in KOREL is shown.

between the parameters converged by simplex with
other line-strengths held fixed.

For the purpose of different numerical tests, there
is built-in into KOREL a possibility to produce syn-
thesized data with chosen orbital parameters. The
profiles of each component can be then chosen in one
of two types, either with broad wings (type 1)

Ij = −c
∆2

(x − x0)2 + ∆2
, (77)

or with continuum (type 2)

Ij = cmin

[

0,

(
(x − x0)

2

∆2
− 1

)]

. (78)

Random noise of a chosen amplitude can be added
into each bin.

4 User’s manual

4.1 Implementation of the code

The code KOREL is written in FORTRAN 77. It’s
PC-version (KOREL.FOR) includes on-line graphics
(the package PHG.FOR), which is written for Micro-
Soft-fortran. The larger LINUX-version (KOREL.F)
contains analogous package with graphical output to
files (HPGL- or PS-) only and could thus be compiled
by any fortran compiler. Starting from release of May
2004 the LINUX-version needs also the file KOREL-
PAR.F, where the maximum number of spectra nsp
and pixels (bins) npx are given as parameters. Note
that npx2 = 2 ∗ npx is also required as the array
dimension for the complex representation of Fourier
transforms of the spectra.

The code PREKOR for preparing the data for KO-
REL exists only in MS-version, because the use of
on-line graphics is crucial for its use.

4.2 Controlling the run
(file KOREL.PAR)

KOREL is controlled by the file KOREL.PAR, from
which there are read (in free format, implicit fortran

definition of type is valid):

1. Control keys

KEY (j)|5j=1, K0, IF IL, KR, KPR .

• Key KEY (j) defines if the lines of the
star No. j (according to Fig. 5) are present
in the spectrum (KEY (j) ≥ 1) or not.
If KEY (j) is split into digits KEY (j) =
10×K1+K0, then K0 = 1 means that the
line-strength of the component j is fixed,
while K0 = 2 means that the intensity of
this component is to be solved according
to Eq. (30). K1 = 0 means that the ra-
dial velocities of the component j are sub-
jected to the orbital motion according to
Eq. (69), while K1 = 1 means that its ra-
dial velocities are free parameters, either
fixed or converged.

• Key K0 specifies if there should be read
data from the file KOREL.DAT (K0 > 0),
or if the calculation should go on with the
previous data (K0 = 0), or (for K0 < 0)
the number (−K0) of spectra is to be sim-
ulated.

• IFIL is the number of harmonics to be
removed by filtering.

• KR is the key of the form of graphic out-
put PHG.OUT (KR = 0 ⇒ no output,
KR = 1 ⇒ PCX-format, KR = 2 ⇒
PostScript-format).

• KPR controls the level of output. The
value of KPR is to be split into digits,
KPR = 10×KPR1+KPR0. Then KPR0

> 1 specifies that the information on sim-
plex convergence has to be printed also
into the file KOREL.RES. KPR1 > 0 spec-
ifies that the file KOREL.O–C has to be
created, into which the difference spectra
O – C will be written in the wavelength
scale connected with the star No. KPR1

(or in the original wavelength scale if KPR1

> 5).
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Table I. Numbering of orbital elements

i orbital element
1 P period [in days]
2 t0 time of periastron passage [in days]
3 e eccentricity
4 ω periastron longitude [in degrees]
5 K semiamplitude of radial velocity of the component with the lower index [in km/s]
6 q the mass ratio of the component with the higher to that with the lower index
7 ω̇ the rate of periastron advance [in degrees/day]

8 Ṗ the time derivative of the period
9 ė the time derivative of the eccentricity [in day−1]

10 K̇ the time derivative of K-velocity [in km/s/day]
11 q̇ the time derivative of mass ratio [in day−1]

2. Next, there is read (in a loop stopped by a line
of zeros – like in FOTEL) information on the
individual elements. In the PC-version or in
the old LINUX-version (up to release of the year
2002) it has the form:

n, Kc, L1, L2, EL(n), ∆(n) .

• n is the number of the element. For n =
10 j+i ≤ 37, n refers to the orbital element
i |7i=1 (see Table I) of the orbit No. j |3j=0

(cf. Fig. 5); For n = 100 j + i ∈ (100, 600)
it denotes the natural logarithm23 of the
line-strengths of the jth component (or tel-
luric lines) in the ith spectrum, EL(n) =
lnsji. For n = 1000 j + i > 1000 it means
the radial velocity of the component j in
the ith spectrum (for the case KEY (j) ≥
11).

• Kc > 0 specifies if the element No. n is to
be converged. The maximum of Kc for all
elements gives the number of large itera-
tion steps.

• Keys L1, L2 specify if the (initial) values
of the element and its step are to be read.

• EL(n) and ∆(n) are the value of the el-
ement and its step (some numbers must
be present even if they are ignored due to
L1 = 0 and/or L2 = 0).

Because the above given coding of n limited the
number of exposures to 99, a new format has
been introduced to the LINUX-version, starting
with release of 2003. It has the form:

c, j, i, Kc, L1, L2, EL(j, i), ∆(j, i) .

23This natural-logarithmic scale of strengths is close to the
traditional magnitude-scale (because lnx ' 0.434×log x), how-
ever, a more positive value means a more intensive contribution
of the component spectrum. These logarithmic values are nor-
malized on output in their exponentials, i.e.

∑

l
sjl =

∑

l
1

(such a normalization in intensities seems to be more stable
than that in (pseudo-)magnitudes,

∑

l
lnsjl = 0, used in KO-

REL up to year 2002).

Here the character c is equal either to ’o’, ’s’, ’v’
or ’w’ and it distinguishes the kind of parame-
ter EL labeled by indices i and j. The letter ’o’
stands for orbital parameter number ’i’ of orbit
’j’ (i.e. it corresponds to the above explained
case n ≤ 37 in the PC-version, however, i may
be higher here – cf. Table I). Letter ’s’ denotes
the strength of lines of component j in the expo-
sure number i (which, unlike the previous case
100 < n < 600, may run over 100 up to the
limit given by dimension of the corresponding
arrays in KORELPAR.F). Similarly, ’v’ denotes
the velocity of component j in exposure i and
’w’ enables to change the weight of exposure i
(j being ignored). The output of these param-
eters has the same form in the new versions of
the code (with explanation of meaning of the
parameters at right on each line), so that the
output values can be cut from KOREL.RES and
copied to the input file KOREL.PAR for next
run of the code.

3. If K0 < 0 then there are next read −K0 val-
ues of time, for which the data should be simu-
lated. Next there must be given for each visible
component its central intensity c, its width ∆
[km/s] and the code 1 or 2 specifying if the pro-
file should be given by Eq. (77) or (78). Finally
the noise of the spectrum and RV/bin is read
for the simulated data.

An example of KOREL.PAR for the LINUX ver-
sion shown in Fig. 6 will thus converge periastron
epoch (identical with max. of RV) and K1,2 of a
two-component binary (on circular orbit with period
1.234567 days) and solve for strengths of telluric lines
(without filtering, with PS- output graphics and a de-
tailed output protocol).
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1 1 0 0 2 1 0 2 2 | key(1,...,5), k= Nr. of sp., filter, plot, print

o 0 1 0 1 1 1.234567 0.000001 | sum= 9.8765

o 0 2 1 1 1 50001.000 .1 |

o 0 3 0 1 1 0.00 .1 |

o 0 4 0 1 1 90.00 1. |

o 0 5 1 1 1 120.0 .5 |

o 0 6 1 1 1 .5 .1 |

o 3 1 0 1 1 365.256360000 0.100 = PERIOD(3)

o 3 2 0 1 1 51547.520600000 10.000 = PERIASTRON EPOCH

o 3 3 0 1 1 0.016710220 0.001 = ECCENTRICITY

o 3 4 0 1 1 301.795199910 10.000 = PERIASTRON LONG.

o 3 5 0 1 1 0.001000000 0.000 = K1

o 3 6 0 1 1 0.000038185 0.000 = M2/M1, K2 = 26.188293833

o 3 7 0 1 1 0.000009111 0.000 = d omega/dt

o 3 8 0 1 1 0.000000000 0.100 = d P/dt

s 5 1 0 1 1 -0.15890 0.10000

s 5 2 0 1 1 0.07530 0.10000

s 5 3 0 1 1 0.10141 0.10000

s 5 4 0 1 1 0.20137 0.10000

s 5 5 0 1 1 0.18172 0.10000

s 5 6 0 1 1 0.04557 0.10000

s 5 7 0 1 1 0.05994 0.10000

s 5 8 0 1 1 -0.10638 0.10000

s 5 9 0 1 1 -0.17056 0.10000

x 0 0 0 0 0 0 0 | end of elements

Fig. 6. Example of file KOREL.PAR.

4.3 Input data (file KOREL.DAT)

In the file KOREL.DAT there is read the time [in Ju-
lian dates], initial wavelength [in Å], RV per one bin
[in km/s], the weight of each spectrum and (starting
from release of 2003) also the number npx of pixels
(bins) in each exposure.24 It must be the same for all
exposures and equal to 256 for the PC-version, while
for the Unix-version it can be any multiple of 256 by
number of the form 2n, n ≥ 0, up to the maximum
value of npx defined by the parameter npx in the file
KORELPAR.F. Next, there follow npx intensities in
points with constant step in RV. There can be read
at maximum 27 input spectra for the PC-version or
any number up to nsp defined in KORELPAR.F for
the LINUX-version. These spectra are to be given
in up to mnu spectral regions (mnu = 5 in the PC-
version), each region being characterized by the initial
λ and by the step RV/bin. Naturally, the number of
input spectra in each region and their phase distri-
bution must be sufficient for their decomposition, i.e.
it must at least higher (or equal) than the number of
calculated components. The number of decomposed
spectra, i.e. the product of number of spectral regions

24An often mistake of users was to run older versions of KO-
REL compiled for a fixed value of npx with data prepared for
its different value. For this reason the value of npx is free in
the newer LINUX versions, but it must be given in the data
itself. The data without this value prepared by an older ver-
sions of PREKOR can be modified to the new form using the
code ‘KORTRANS.F’ (cf. Section 4.7.

× number of components must not exceed the value
mnsu given together with npx, nsp and mnu in the
file KORELPAR.F (or fixed to 15 in the PC-version).

The file KOREL.DAT can be prepared by the code
PREKOR.

4.4 The code PREKOR

The code PREKOR has been developed to facilitate
the preparation of data for KOREL, it means to cut
the proper spectral regions from a set of input spec-
tra, to interpolate them into the equidistant logarith-
mic wavelength scale and to write them in the for-
mat required by KOREL in the file KOREL.DAT.
Because a visual check of the proper choice of spec-
tral regions is welcome, the PREKOR is written in
MS-FORTRAN only and the distributed exe-version
has to be run under DOS, even if the data are in-
tended for a LINUX-version of KOREL. A version
of PREKOR with PG-PLOT graphics is in prepa-
ration, however some problems with input of binary
data makes it platform-dependent. Users without ac-
cess to DOS- (or WINDOWS-) computers have to
produce the KOREL.DAT input using some other fa-
cilities (e.g. to select proper regions using MIDAS or
IRAF and to rewrite them into the required format
by some user-written code).

As an input, PREKOR needs a list of input spec-
tra in file PREKOR.LST and it produces the data for
KOREL in its (newly created) output file PREKOR.
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OUT, which has then to be renamed as KOREL.DAT.
Versions of PREKOR starting from October 2001 en-
able also to prepare parameters for disentangling the
telluric lines, in which case an input file PREKOR.
PAR is needed and the output is written as PREKOR.
RES.

When started, PREKOR asks the user at first to
choose the mode of calculation (or the type of KO-
REL data to be got). The choice of mode = 0 per-
forms the above mentioned calculation of parame-
ters for disentangling of telluric lines. The choice
mode > 0 means to prepare data with the number
npx = 128 × 2mode bins in each spectral region. It
means that mode = 1 is required for the PC-version
of KOREL, mode = 2 for the older LINUX-version
and both or some higher integer number (up to a limit
given by the array dimensions in the PREKOR code)
can be chosen for the version with KORELPAR.F-
file.

For mode > 0, PREKOR reads the description of
files with individual exposures from the file PREKOR.
LST. Older versions of PREKOR stopped after finish-
ing the work with the first 30 spectra from PREKOR.
LST and a rearangement of this input file was needed
to continue with the subsequent spectra (and to con-
catenate the corresponding output PREKOR.OUT
files). Starting from versions of January 2004, PRE-
KOR continues to cut out from subsequent spectra
the region chosen according to the first displayed spec-
tra and offers them for saving into output.

The file PREKOR.LST must contain on each line
the name of file with individual exposure, its Julian
date, weight, a code of the type of data file and the
value of its shift in RV’s (in the format a12,f11.4,

f8.3,i2,f8.3). If the weight is negative, the data
file is ignored. The code equal to 0 denotes ASCI
data files with wavelength and intensity in free for-
mat on each line. The code =1 refers to files *.RUI
and 2 to *.UUI of data in format SPEFO used at
Ondřejov observatory. The code =3 corresponds to
the modified MIDAS output where the first three lines
are a comment and then there follow lines with their
sequence numbers (which are ignored by PREKOR),
wavelengths and intensities. Tables produced by IRAF
(with headings consisting of 106 records) can be read
using the code =4. Finally, for the code =5, spectra
in FITS- format (BITPIX = −32) can be read. The
dimensions of arrays in the code limit the length of
the input spectrum to 4100 bins at maximum (the
rest is ignored). The only exception are the input
files in the FITS-format (code =5) where the pre-
view of the whole spectrum is drawn using averaged
pixel-values and the data used for the calculations are
then read only starting from the required wavelength
(the limit of 4100 pixels is thus valid for the cho-
sen spectral region only). The first spectrum is read

from its appropriate input file and its preview is plot-
ted on the screen. User is asked to insert the initial
wavelength and step in RV per bin. The correspond-
ing spectral region is marked by a different colour on
the wavelength scale and the chosen parts of spectra
for the first portion of exposures (with non-negative
weights) are then displayed to enable to check if their
margins are really in the continuum. Recent versions
of PREKOR enable also an approximate rectification
of the chosen spectral region consisting in normaliza-
tion by linear function joining the first and the last
pixel of the region.25 If the result is satisfactory, it
can be saved into file PREKOR.OUT and subsequent
spectral regions can be chosen in an infinite loop till
the end of the run is not required.26 The final file
PREKOR.OUT can then be renamed and used as
KOREL.DAT. The shift in RV of input spectra can
be defined in the last column of PREKOR.LST either
to transform the data from observed to heliocentric
wavelength scale or to compensate for possible errors
in wavelength-scale of the input spectra. These may
be measured according to telluric lines either manu-
ally by some other mean or also by KOREL. A spec-
tral region rich for telluric lines can be chosen first
for this purpose and the column with O–C of RVs
of telluric lines can be then copied from the file KO-
REL.RES into PREKOR.LST to reduce the scatter
of RVs of telluric lines in other spectral regions.

The theoretical RVs of telluric lines can be pre-
dicted from the coordinates of the observed star. To
calculate the corresponding fictitious orbital parame-
ters of the telluric lines (usually taken as the com-
ponent No. 5 on the orbit No. 3), PREKOR can
be run in mod = 0. In this case an additional file
PREKOR.PAR must be prepared in which are given
(on separate lines) the right ascension and declina-
tion of the star (in hours and minutes or degrees
and arc-minutes, resp.). On next line, the equinox
of the source coordinates is read. The following line
gives the geographic longitude and latitude of the
telescope in degrees and its altitude above the sea
level in meters. As a result, a block of lines with
orbital parameters of the orbit are written into the
file PREKOR.RES, from where they can be directly
copied into KOREL.PAR. In addition, radial veloc-
ities of the telluric lines are calculated for each ex-
posure listed in PREKOR.LST with higher precision
taking into account also the planetary perturbations

25This option can help for quick inspection of non-rectified
spectra by preventing the jumps between the margins of the
regions. However, its use may be dangerous because of hiding
possible spectral lines on margins and because of the influence
of random noise in the ultimate pixels. A thorough rectification
of the whole spectrum before the run of PREKOR is always
preferable.

26The commands for controlling the run of PREKOR differ
depending on version, but they are always displayed on the
screen and offered to the user.
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and the rotation of the Earth.

4.5 Outputs of KOREL

There are several possible forms of output. During
the run of the code a basic information is shown on
the screen. In the PC-version this information in-
cludes graphical output on the screen. Simultane-
ously, the figure can be written into the file PHG.
OUT.27 Main information about the run and the re-
sults is contained in the file KOREL.RES. Residual
spectra can be stored in the file KOREL.O–C.

After the input of the data and control keys, the ba-
sic information on the task (e.g. the number of data
and number of parameters to be solved) is summa-
rized on the screen. Then the input spectra are drawn
in green colour (in the PC-version) subsequently from
the top to the bottom of the screen. During the iter-
ation of parameters, a protocol on the simplex proce-
dure is shown on the screen and it can be directed also
to KOREL.RES.28 In this protocol, the first number
indicates the step (running up to ten times the num-
ber of iterated parameters), letter A, B, C or D shows
the type of simplex operation and the following num-
ber the worst point of the simplex (which is to be
improved).29 It is recommended to check if the first
point is improved reasonably soon. The opposite may
indicate that there was chosen a too large initial value
of step of some parameter (usually of that, which is
improved first). Next in the line is written the highest
value of the minimized sum. It should be decreasing,
however an increase is possible at the shrinkage oper-
ation indicated by D.30 Next there are typed the val-
ues of converged parameters, which help to check the
status of the convergence. After the end of the con-
vergence, the disentangled line profiles are shown at
the bottom of the screen in blue colour and their su-
perpositions with velocities corresponding to the so-
lution of orbital parameters are plotted in blue over
the green input spectra. Finally, each spectrum is fit-
ted by the superposition of disentangled profiles with
RVs independent of the orbital parameters and the
corresponding fit is drawn in red. The L-shaped line
in the figure indicates the wavelength unit (100km/s)
and the unit of intensity (0.1 of the continuum level).

The file KOREL.RES yields most of the informa-
tion about the calculation and its results. First, there
are summarized the values of parameters character-
izing the input of the task like the number of spectra
etc. Next, during the iteration, there is written in

27To facilitate the next work with the graphics output, it is
named PHG.PS in the case of PostScript format.

28Cf. the use of key KPR in Section 4.2.
29See the FOTEL-manual (Hadrava 2004b) for a more de-

tailed explanation of the protocol and its meaning.
30Obviously, the monotonous decrease of the sum can also

be violated by an insufficient convergence of the line strengths
(as explained on page 3).

each its step the number of the step, the value of
the sum S of squares for the present values of or-
bital parameters, its value after recalculation of the
strengths of lines and the mean error of the intensity.
If the print-mode is ≥ 2, the protocol on the conver-
gence by simplex-method is copied here as well. After
the iteration, the orbital parameters are printed for
each orbit with non-zero period. Next, all non-zero
strengths of lines are printed together with the fi-
nal values of their steps (which can be changed with
respect to their input values if the corresponding pa-
rameters have been converged by simplex). Then the
values of S are repeated once more. Next the spec-
tra of individual components are printed (in the order
of columns corresponding to the order of component
stars). It must be kept in mind, that the values of
continua of individual components are unknown, so
that the depths of lines are normalized with respect
to the sum all continua. The number 1.0 is added
to each component spectrum to prevent the negative
values in absorption profiles. Each spectral region
is introduced by information on the number of ex-
posures contributing to it and by the mean value of
their shifts of continua. Finally, for each exposure
the radial velocities found as the best superposition
of the decomposed spectra are printed. The order of
the components corresponds to the previously used
order of the output spectra and, in addition, it is in-
dicated by the number of the component. Each radial
velocity is followed by the value of O–C, where C cor-
responds to the value according to the final values of
orbital parameters.

4.6 The code KORNOR

To facilitate the normalization of spectra disentangled
by KOREL a simple code named KORNOR has been
written (in MS-Fortran). This code reads the param-
eters par, mi, npx, nsp and kr from the first line and
Cj |

nsp
j=1 from the second line of the file KORNOR.PAR

and the disentangled spectra cut out from the file KO-
RNOR.DAT in the form of table λi, I

′
1,i, ..., I

′
nsp,i|

npx
i=1

(for each spectral region separately). KORNOR draws
first these input spectra on the screen in pale colours
and with the unknown continua shifts as they are re-
ceived from KOREL (i.e. the mean intensity shifted
to the level = 1). It also draws (in yellow colour)
an example composed spectrum with zero Doppler
shifts of components and the proper shift of the con-
tinuum given by the parameter mi which is the mean
intensity given for each spectral region in the output
of KOREL. The continuum is then identified in this
spectrum and marked by red line at the level = 1. It
is defined to be in frequencies where the spectrum dif-
fers from 1 for less than a multiple par (which has to
be established by the method of trials and errors, but
typically can be chosen around 0.2) of the noise of the
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spectrum. At these points the integrals at continua
of each component are calculated and the continuum
shifts are found according to Eq. (66). The rectified
component spectra are finally rescaled, i.e. calculated
by Eq. (68) using continua values Cj given at the file
KORNOR.PAR and they are drawn on the screen and
written on the output.

4.7 The code KORTRANS

This code was originally written to transform the file
KOREL.DAT from DOS to UNIX format on com-
puters, where the utility DOS2UNIX is not available.
The code PREKOR writes intensities for each ex-
posure by one command – always 10 values in one
line ended by mark nonunderstandable to UNIX. The
code KORTRANS can read each line separately from
these files renamed to KORTRANS.IN and to write
them into KOREL.DAT directly readable by KOREL.
Because the older version of KOREL did not require
the number npx of bins in the heading of each expo-
sure, KORTRANS can update the old data by insert-
ing this value given in file KORTRANS.PAR. This
file has a single line with values npx, v1, v2, ∆v in
a free format (e.g. “512 0.02 0.98 0.005”). If the
value dv > 0, the spectral region of each input ex-
posure is transformed (filtered or tapered at edges –
Section 2.4.2, p. 22) according to formula

Iout(v) = 1 +
Iin(v) − 1

(1 + exp v1−v
∆v )(1 + exp v−v2

∆v )
, (79)

where v is the logarithmic wavelength rescaled to be 0
and 1 on both edges of the spectral regions. This ta-
pering suppresses smoothly (on a characteristic width
∆v) spectral lines and deviations of continuum from
1 at edges of the spectral region (i.e. below v1 and
above v2).

4.8 Problems with KOREL

In this Section some hints, explanations to problems
and answers to often asked questions of users will be
given.

Incomprehensible list input in korel.dat: This error
message and abort at the beginning of the run of KO-
REL appears when the file KOREL.DAT is prepared
by PREKOR on a DOS operating computer and it
is transmitted to a LINUX operating computer for
the run of KOREL. It is due to the incompatibility
of the ends of lines between these systems. It can be
corrected using the utility DOS2UNIX on the file KO-
REL.DAT or using the code KORTRANS, which can
yield some additional corrections to the input data.

Array bounds exceeded in subroutine CSWAP: This
subroutine is called to exchange two columns of a
matrix in the solution of a set of linear equations

by the subroutine CGSEV accepted from the LA-
PACK package of FORTRAN routines. It uses a
standard trick to speed up matrix operations avoiding
the lengthy straightforward calculation of position in
computer memory for each element of a multidimen-
sional array by a use of its equivalence with a vector.
The dimension of this vector is declared only formally
in this subroutine (and it is underestimated) and the
proper bound of the array is ensured by the correct
demands of the higher subroutine. Array bounds
checking of the FORTRAN compiler should thus be
switch off.

Undulation of disentangled spectra: Sometimes it
happens that the disentangled spectra have large am-
plitude and long wavelength wavy perturbations in
antiphase (which cancel in the sum of all compo-
nents). Such errors appear quite often at the begin-
ning of the spectra decomposition and in favourable
case (but not always) they are suppressed in the course
of convergence of the orbital and other free parame-
ters. This feature is due to a bad definition of lower
Fourier modes by Eq. (19); the continua of compo-
nents cannot be distinguished, because they are not
affected by the orbital motion at all, and the lower
modes are affected only slightly, hence they are de-
termined only poorly — the corresponding matrix is
nearly singular and a small error (e.g. in rectification
of input spectra) can result in exagerrated values of
amplitudes of the modes. This danger increases if the
disentangled regions are long compared to the real
RV- amplitudes. The contributions of these poorly
determined modes to the total minimized sum S can
be still small, so that the solution of higher Fourier
modes and the free orbital and others parameters can
be still correct. In such a case, it is sufficient to rectify
the disentangled spectra once more.31 However, there
is a real danger that the RVs or line-strengths will
converge to a false minimum in which the source of
the low modes will be fitted best and the true spectral
lines encrypted in higher modes will be ignored. Sev-
eral actions can be undertaken to prevent this failure.
Firstly, user should check if all exposures are correctly
rectified32 and either to improve or to remove suspi-
cious exposures. The use of filtering out the lower
modes (by the key IFIL described in Section 4.2)
may help to hit the proper solution, in which finally
also the undulation may be suppressed. A better ini-
tial estimate of orbital parameters or line-strengths
(e.g. from other spectral regions, from some other
sources or simply found by chance from numerous
trials) may also be helpful.

31A simultaneous rectification of all components at once with
the condition of mutual cancelling of the corrections would be
desirable.

32Problems may arise also from overlaps of orders in echelle
spectra.
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