

ALMA Winter school CASA hands-on session

Czech ARC node, 28/29 February 2012

- 13:30 hands-on part 1
- 15:00 coffee
- 15:30 hands-on part 2

Prerequisites 1) at least 60 GB empty disk space 2) Installation of CASA 3.3 3) files

M100line-orig.mask.tgz m100-tutorial-msdata.tgz reduce-m100-with-problems-light.py

from

http://almascience.eso.org/arcdistribution/casa-tutorials/7a76f411abc50757f2daa53399d20fe0

Prerequisites

The data

47 pointings mosaic in ALMA Band 3, CO(1-0), of NGC4321 (M100), the brightest Spiral Galaxy in the Virgo Cluster located at a distance of 14-20 Mpc. One arcsec corresponds to ~70-100 pc.

Two MSs:

X220-line.ms, X54-line.ms

observed on 10 Sept 2011 with 13 antennas

Already applied calibrations/corrections:

Tsys, WVR, Antenna Positions, Delay Errors

Calibrator source observations contained in the dataset:

Flux calibrator:	Titan
Bandpass calibrator:	3C 273
Phase calibrators:	QSO 1224+213 (primary) 3C 273 (secondary)
Pointing calibrator:	3C 273

Your task:

Download

reduce-m100-with-problems-light.py

(see link "script" in the program point for this session on the school home page)

Script contains a complete analysis of the M100 data **in 21 steps** up to imaging the CO(1-0) line emission and some image analysis.

We introduced 9 **PROBLEMS** in the script.

Try to solve them.

Analysis steps in reduce-m100-with-problems-light.py:

- 0: 'Flagging',
- 1: 'Rebin to a reduced resolution of approx. 10 km/s',
- 2: 'Fast phase-only gaincal for bandpass',
- 3: 'Bandpass',
- 4: 'Setjy',
- 5: 'Fast phase-only gaincal',
- 6: 'Slow phase-only gaincal',
- 7: 'Slow amp and phase gaincal',
- 8: 'Fluxscale',
- 9: 'Applycal',

→ after ca. 50 min net processing time: X220-line-vs.ms, X54-line-vs.ms

Analysis steps in reduce-m100-with-problems-light.py (ctnd.):

- 10: 'Test image of the secondary phase cal',
- 11: 'Test image of the primary phase cal',
- 12: 'Test image of Titan',
- 13: 'Split out corrected data and time average',
- 14: 'Concatenate data', → M100all_lores.ms
- 15: 'Adjust fluxscale',
- 16: 'Split out the corrected M100 data',
- 17: 'Continuum image of M100',
- 18: 'Determine and subtract continuum',
- 19: 'Test image of central field',
- 20: 'Clean CO(1-0) line cube mosaic',
- 21: 'Make moment maps'

The infrastructure

Actual analysis begins after

Begin analysis

The Python variable

mysteps

will control which steps are executed when you start the script using

```
execfile('reduce-m100-with-problems-light.py')
```

e.g. typing

```
mysteps = [2, 3, 4]
```

execfile('reduce-m100-with-problems-light.py')

will execute only steps 2, 3, and 4

Setting mysteps = [] (empty list) will make it execute all steps.

The timing() function tells you about the execution times of the steps (good diagnostic).

The problems

Look for the string 'PROBLEM" in the script. List is given at the beginning:

- # List of problems in the individual analysis steps of this script:
- # Step 0: Write a flagdata2 command to flag the channels
- # 239, 447/448, 720/721 and 2847/2848 in all SPWs
- # Step 5: Determine the solint parameter in gaincal
- # Step 7: Determine the gaintable parameter in gaincal
- # Step 9: Complete the last applycal command
- # Step 13: Determine the missing parameters in split
- # Step 17: Determine the mode, imagermode, and mask parameters in clean
- # Step 18: Determine the fitspw parameter in uvcontsub
- # Step 19: The mask test-M100line-orig.mask is missing. Generate it.
- # Step 21: Determine the axis and includepix parameters in immoments


```
The problem in step 0
mystep = 0
if(mystep in thesteps):
  print 'Step ', mystep, step title[mystep]
  for name in basename:
    flagmanager(vis=name+'-line.ms', mode='restore',
      versionname='apriori')
    # Edge channels
    flagdata2(vis=name+'-line.ms', selectdata=T,
              field='', manualflag=T,
              mf spw='0~3:0~10;3800~3839',
              flagbackup = F)
    # Channels 239, 447/448, 720/721 and 2847/2848 are off in all SPWs
    # PROBLEM: write a flagdata2 command to flag these channels
```


The problem in step 5: Determine the solint parameter in gaincal

```
# Fast phase-only gaincal
mystep = 5
if(mystep in thesteps):
  print 'Step ', mystep, step_title[mystep]
  for name in basename:
    os.system('rm -rf cal-'+name+'-int.Gp')
    gaincal(vis=name+'-line-vs.ms',
            caltable='cal-'+name+'-int.Gp',
            spw='*:25~455',
            field='*Phase*,*Band*,Titan',
            gaintable='cal-'+name+'.B1',
            selectdata=F, solint='PROBLEM',
            refant=therefant, calmode='p')
```


The problem in step 7: Determine the gaintable parameter in gaincal

The problem in step 9: Complete the last applycal command

to M100
applycal(PROBLEM)

Hands-on session - sanity check

The test images of the phase calibrators and the flux calibrator from steps 10, 11, and 12:

test-X220-prim_phasecal.png

test-X54-prim_phasecal.png

Hands-on session - sanity check

The test images of the phase calibrators and the flux calibrator from steps 10, 11, and 12:

test-X220-sec_phasecal.png

test-X54-sec_phasecal.png

D. Petry, ALMA Winter School, hands-on session, February 2012

Hands-on session - sanity check

The test images of the phase calibrators and the flux calibrator from steps 10, 11, and 12:

test-X220-Titan.image

test-X54-Titan.image

The problem in step 13: Determine the missing parameters in split

```
# Split out corrected data and time average at the same time
# into 1 minute time bins (makes following steps factor 3 faster!)
mystep = 13
if(mystep in thesteps):
    print 'Step ', mystep, step_title[mystep]
    for name in basename:
        os.system('rm -rf '+name+'-corrected.ms*')
        split(vis=name+'-line-vs.ms', outputvis=name+'-corrected.ms'
        ) # PROBLEM (find the missing parameter)
```


The problem in step 17: Determine the mode, imagermode, and mask parameters in clean

```
# Continuum image
mystep = 17
if(mystep in thesteps):
    print 'Step ', mystep, step title[mystep]
    os.system('rm -rf M100cont.*')
    clean(vis = 'M100all lores.ms',
          imagename = 'M100cont',
          field='2~47',
          spw='0:10~210;256~440,1~3:10~460', # exclude CO(1-0) line
          mode = 'PROBLEM',
          niter = 1000,
          mask=[0,0,0,0], # PROBLEM
          imagermode = 'PROBLEM',
          interactive = F, # switch to interact. clean to determine mask
          imsize = 200,
          cell = '0.5arcsec',
          phasecenter='J2000 12h22m54.9 +15d49m15')
```


The problem in step 18: Determine the fitspw parameter in uvcontsub

```
mystep = 18
if(mystep in thesteps):
    print 'Step ', mystep, step_title[mystep]
    os.system('rm -rf M100all_lores.ms.c*')
    uvcontsub(vis='M100all_lores.ms',field='',
        fitspw='PROBLEM', # use plotms to determine fitspw
        combine='',solint='inf',fitorder=1,spw='0',want_cont=False)
```


The problem in step 19: The mask test-M100line-orig.mask is missing. Generate it using interactive clean

```
mystep = 19
if(mystep in thesteps):
    print 'Step ', mystep, step title[mystep]
    os.system('rm -rf test-M100line.*')
    clean(vis='M100all lores.ms.contsub', imagename='test-M100line',
          field='26', spw='0:231~248',
          mode='mfs',
          niter=500,gain=0.1,threshold='0.0mJy',
          imagermode='csclean',
          mask='test-M100line-orig.mask', # PROBLEM: mask missing
          interactive=False, # switch to interactive to determine it
          outframe='BARY',veltype='radio',
          imsize=200,cell='0.5arcsec', phasecenter='',
          stokes='I',weighting='briggs',robust=0.5,
          calready=False,
          npercycle=100,cyclefactor=1.5,cyclespeedup=-1)
```

Careful: don't press Ctrl-C during clean!

The problem in step 19: Generate a mask using interactive clean

D. Petry, ALMA Winter School, hands-on session, February 2012

The problem in step 19: Generate a mask using interactive clean

Need to further adjust mask after a few iterations ...

Choose "hot metal" colour scheme in noisy images to better see regions.

Move final mask to a name not starting with same name as image!

D. Petry, ALMA Winter School, hands-on session, February 2012

The problem in step 19: Generate a mask using interactive clean

Final test image of the central field.


```
The problem in step 21: Determine the axis parameter in immoments
mystep = 21
if(mystep in thesteps):
    print 'Step ', mystep, step title[mystep]
    os.system('rm -rf M100-C0.mom?')
    immoments(imagename='M100line.image',
              moments=[0], # i.e. the integrated spectrum
              axis='PROBLEM',
              region='', box='100,110,515,500',
              chans='7~35',
              mask='',
              outfile='M100-CO.mom0',
              includepix=[0.03, 100000])
    immoments(imagename='M100line.image',
              moments=[1], # i.e. the velocity field
              axis='PROBLEM',
              region='', box='100,110,515,500',
              chans='7~35',
              mask='',
              outfile='M100-CO.mom1',
              includepix=[0.035, 100000])
```

D. Petry, ALMA Winter School, hands-on session, February 2012

Hands-on session - the problems step by step

Step 21: immoments results

M100-CO_map.png (colour = mom0, contour = mom1)

Hands-on session - the problems step by step

Step 21: immoments results

M100-CO_velfield.png (colour = mom1, contour = mom0)

Hands-on session - the problems step by step

Step 21: immoments results

M100-CO_contmap.png (colour = mom0, contour = cont)