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Abstract 
 
We examine the shape of a "rubble pile" asteroid as it slowly gains angular momentum by YORP 
torque, to the point where "landsliding" occurs.  We find that it evolves to a "top" shape with 
constant angle of repose from the equator up to mid-latitude.  A similar calculation for a non-
spinning, extremely elongate rubble pile body suggests that it should collapse into the rough 
shape of a prolate ellipsoid of about 2.5:1 axis ratio.  We also investigate the tidal effects of a 
binary system with a "top shape" primary spinning at near the critical limit for stability.  We find 
that very close to the stability limit, the tide from the secondary can actually levitate loose debris 
from the suface and re-deposit it, in a process we call “tidal saltation”, such that angular 
momentum is transferred from the primary spin to the satellite orbit, thus maintaining the 
equilibrium of near-critical spin as YORP continues to add angular momentum to the system. 
 
1. Introduction 
 
In the recent Science papers by Ostro et al. (2006) and Scheeres et al., (2006) the asteroid 
(66391) 1999 KW4, shown in the cover illustration, is remarkable in having an almost constant 
surface slope, in the range of 30-35°, almost uniformly in the direction of the equator.  The 
explanation appears to be that as 1999 KW4 is spun up by YORP, the local slope increases to the 
critical angle for land-sliding, which moves material toward the equator and re-establishes an 
equilibrium with the average slope of the surface being the angle of repose, which for most dry 
loose material is around 30-35°.  The "top" shape appears to be the figure of quasi-equilibrium of 
a body that is spinning at a rate that is critical at the equator (gravity = centrifugal force), and has 
a constant slope at other latitudes, except for the poles, which would be pointed otherwise, and 
the equator, where slope must pass through zero.  Indeed, the detailed shape of the figure allows 
us to infer the critical angle of slide of the regolith.  In the first part of this paper we calculate the 
static figure of constant slope to compare with the radar-derived shape of 1999 KW4. 
 
A second remarkable feature of 1999 KW4 is the extremely regular equatorial band, which is 
within about 1% of cancellation of gravity by centrifugal force.  We suggest that this equilibrium 
is established by tidal forces from the satellite moving regolith around the equator.  In the second 
part of this paper, we develop the equations of motion for material near the equator in the 
rotating frame of the primary, including tidal force from the secondary and sliding friction as 
material starts to move.  We present numerical integrations of such mass motion to show that it 
results in a sort of "tidal torque" between the primary spin and the satellite orbit that transfers 
angular momentum to the satellite orbit, potentially much more rapidly than solid-body tides. 
 
We are motivated in these studies by the fact that (66391) 1999 KW4 is not unique in these 
characteristics, indeed, it seems to be the archetypical case of an asynchronous binary system.  



Many of the systems observed are found to have primaries with very low amplitude lightcurves 
(e.g., Pravec et al. 2006), indicating nearly circular equatorial profiles, and with spin periods very 
near the critical limit (Pravec and Harris 2007).  Radar observations of a number of NEA 
asynchronous binary systems likewise indicate primaries with very regular equatorial profiles 
and spins near the critical limit (e.g., Shepard et al. 2006). 
 
2. Constant-slope shape of a critically spinning body 
 
The equilibrium figures of uniformly rotating fluids has been well studied (e.g., Chandrasekhar 
1969).  Up to a certain critical spin rate, the equilibrium figure of a homogeneous fluid is an 
oblate spheroid, a so-called Maclauren spheroid.  At higher spin rates, an equilibrium triaxial 
ellipsoid figure exists, called Jacobi ellipsoids, up to a point where there is no equilibrium figure 
that can contain more angular momentum, and a body with still more angular momentum must 
fission in some manner to become a binary.  These shapes are hardly relevant for small solid 
asteroids, even ones that are "rubble piles", with no tensile strength.  The reason is that even 
strengthless rubble can sustain a slope against the pull of gravity, just as a sand pile does not 
flow like water but rather relaxes into a conical form with a rather constant slope, typically in the 
range of 35° or so.  Thus we expect that the figure of a spinning asteroid can deviate from 
equilibrium (zero slope) by up to some critical angle before slumping (landsliding) occurs. 
 
A brief digression into the subject of soil mechanics is in order.  Geologists define two angles 
relating to the slope of rubble or other loose material.  These angles are related to the coefficients 
of sliding (kinetic) friction and of static friction for the material.  The condition for stability 
against landsliding is the maximum slope that a material such as sand, loose rock, or whatever 
can withstand before landsliding occurs.  This angle is called the angle of slide, related to the 
coefficient of static friction: ss µβ =tan .  A similar angle, the angle of repose, βr, is the slope at 

which a landslide stops, or comes to rest.  This angle is related to the coefficient of sliding 
(kinetic) friction: kr µβ =tan .  The coefficient of sliding friction is always less than the 

coefficient of static friction (traction decreases once sliding starts, as a person driving in a skid 
discovers).  For typical dry rubble on the Earth, the angle of repose is in the range of about 35°.  
The angle of slide is typically 5° to 10° greater.  Thus nominal values βr = 35° and βs = 42° 
correspond to µk = 0.7 and µs = 0.9. 
 
To model the quasi-equilibrium shape of a rubble pile, we first define a relation between the 
gravitational acceleration at the equator, g, and the centrifugal force due to rotational spin: 
 
                                                     RgR 2
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where ω is the angular frequency of rotation and R is the equatorial radius of the body.  ω0 is the 
critical spin frequency at which acceleration is zero; for a sphere, 32

0 / RGM=ω , but for a non-

spherical body, it will differ a bit due to gravitational harmonics.  The parameter δ is chosen such 
that the net acceleration at the equator is δ  times the gravitational acceleration, and for δ  = 0 

acceleration vanishes.  In terms of spin rate, 2
0)/(1 ωωδ −= , or δωω −= 1/ 0 .  It is instructive 

to consider the local slope versus latitude for a sphere for various values of δ.  This can be 



computed analytically, 
which we have done in 
Figure 1.  At the critical 
spin rate, local slope is just 
equal to the co-latitude.  
Note that slope begins to 
exceed a critical value of 
around 40° at a value of δ ≈ 
0.2, which translates to a 
spin rate of ω/ω0 ≈ 0.9.  
Thus, we expect that an 
initially spherical "rubble 
pile" with a typical angle of 
repose would begin to 
experience landsliding as it 
were gradually spun up 
upon reaching about 90% 
of the critical spin rate ω0.  
This is consistent with the 
calculations of Holsapple 
(2004).  However, in the 
last 10% of spin-up, slopes reach extreme values, thus we expect slumping to occur.  The onset 
should be in the mid-latitude range, around 20°-30°, and with increasing spin should progress all 
the way to the equator quite rapidly.  Note that "downhill" is always toward the equator, so 
slumping will only occur at latitudes less than where slope exceeds the critical value. 
 
In order to compute quasi-equilibrium figures of a 
spinning body, we wrote a fairly simple program to 
numerically evaluate the gravity acceleration vector at 
the surface of a longitudinally symmetric body.  We 
start with an oblate ellipsoid with flattening f = c/a in 
the polar dimension, where c is the polar dimension and 
a is the equatorial dimension.  We break the body up 
into cubic cells of 1/50 the equatorial dimension, thus 
for a sphere, we have a little over half a million mass 
elements.  We compute the acceleration of gravity at 
each degree of latitude on the body by adding up the 
acceleration from each of the individual "cubes" of mass.  
We then compute local slopes, for a set value of delta.  
We proceed iteratively, modifying the slope at any 
latitude where the value exceeds the critical value to a 
lower value in the direction of the equilibrium, and then 
we integrate the slopes starting from the equator to 
determine a new shape profile.  Since the acceleration of 
gravity changes with shape, we must iterate several 
times to obtain convergence to a shape with constant 

 
Figure 2.  Shape with constant 
slope β = 35° at all latitudes, and 
equatorial acceleration δ = 0.01. 
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Figure 1.  Slope vs. latitude for various values of δ. 



slope.  Our first test of the program was to specify a critical slope of zero corresponding to a 
fluid body, which should result in a Maclauren ellipsoid.  We confirmed that we did get this 
result, and we verified the flattening of the computed ellipsoid at our chosen value of δ with that 
given by Chandrasekhar (1969) for an analytically computed Maclauren ellipsoid.  For our first 
real calculation, we started from a sphere, chose a critical slope β = 35°, and assumed a value of 
δ = 0.01.  We chose a non-zero value of δ in order to avoid the singularity of surface acceleration 
going completely to zero at the equator. The program converged on the shape shown in Figure 2.  
This shape is not too realistic, for one thing it has a greater moment of inertia about an axis 
through the equator than 
through the pole, so the 
stable rotational spin 
state would be about an 
axis through the equator.  
More importantly, 
though, starting from a 
sphere, evolution to this 
shape would involve 
"landsliding" uphill at 
higher latitudes, since as 
can be seen in Figure 1, 
the slope in the initial 
spherical figure as less 
than β  at latitudes 
greater than about the 
compliment of β. 
 
To fix this problem, we 
introduced a constraint in 
the program to hold the 
figure constant at 
latitudes greater than a specified value.  As the 
figure adjusts from an initial shape (we chose a 
sphere for our main calculations), the polar 
dimension shrinks down and the equatorial 
dimension expands, and in the process the slope at 
higher latitudes decreases a bit, even if the shape of 
the "polar cap" is not changed.  Thus we found that 
we had to tinker a bit with the latitude constraint in 
order to end up with figures that blended smoothly 
from constant slope at the chosen value of β to the 
decreasing slope at higher latitudes.  Figure 3 is a set 
of figure profiles at equatorial aspect for a number of 
slope values spanning the range of typical "rubble" 
materials.  These "nut-shaped" profiles look 
satisfyingly similar to the shape profile of (66391) 
1999 KW4, as can be seen in Figure 4, comparing 
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Figure 3.  Figures of constant slope from the equator up to a 
latitude approximately equal to the compliment of the critical 
slope angle, such that "landsliding" uphill is not permitted. 

 
Figure 4.  Constant-slope figure for 
critical slope of 37° compared to shape 
of (66391) 1999 KW4 (shape profile 
from Scheeres et al. 2006). 



the actual shape to the slope = 37° model.  It must be noted that due to smaller scale irregularities 
it is not possible to estimate the critical slope angle closer than around ±5°. 
3. Constant-slope shape of a non-spinning body 
 
After experimenting a bit with the program, it occurred to us that the same program could be 
used to address the question of the maximum elongation of a non-spinning rubble pile body.  If 
we imagine an extremely elongated "cigar-shaped" body, not spinning at all, the direction of 
local gravity at the surface will deviate from "vertical" by more than the allowed critical slope, 
and landsliding should occur, tending to collapse the body in the direction of a sphere.  The 
question we ask is, how elongate can a body be and still not have slopes anywhere exceeding the 
critical slope angle?  To investigate this, we can set δ = 1.0, corresponding to zero centrifugal 
force, hence a non-spinning body, and start with an initial figure with "flattening" f  > 1, 
corresponding to a body with polar dimension greater than the equatorial radius.  This is of 
course perpendicular to the axis arrangement of a slowly spinning prolate ellipsoid, but does not 
matter since we are considering a body with no spin at all.  Somewhat to our surprise, the 
program worked fine with values of f  > 1, even though we had not coded it with that intention.  
Figure 5 is a plot of some results.  We have rotated the figure 90° to correspond to a prolate body 
rotating slowly (not at all, in fact) about its short axis.  We made a first run starting from a 5:1 
elongate body, that is, with f = 5.  In this case, it is the polar region that has slope greater than the 
critical value, so landsliding occurs from the long ends toward the "equator" (the short 
dimension), but does not extend down to the equator.  We first calculated an unconstrained 
figure, starting from a 5:1 prolate ellipsoid, where the final equilibrium figure has a constant 
slope β = 40° everywhere, regardless of "landsliding uphill".  A bi-lobed figure, which is 
analogous to the unconstrained shape in Figure 2 for a critically spinning body, resulted. We next 
constrained the shape not to change in the range (this time near the "equator") where slope was 
initially under the 
critical value.  The 
"torpedo" shaped 
figure is what results 
when we start from the 
same 5:1 prolate 
ellipsoid.  Mass is not 
conserved in these 
calculations.  Instead 
the equatorial (polar in 
this rotated view) 
dimension is held to a 
constant value of 1.0 
in the calculation.  In 
the figure, the 
unconstrained (bi-
lobed) solution is re-
scaled to match the 
length of the 
constrained solution.  
In both solutions, the 
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Figure 5.  Constant-slope figures of prolate, non-rotating bodies.  See 
text for complete description. 



length to width ratio shrinks down to about 3:1.  The odd shape of the bi-lobed solution appears a 
bit artificial, since we have constrained the "waist" of the figure to remain constant, yet matter 
must cascade down into that region from the long ends.  Thus, the unconstrained bi-lobed shape 
is not as unphysical as the shape in figure 2, since some (maybe all) of the mass motion in the 
equatorial range is not "up hill".  The bi-lobed shape is somewhat suggestive of some observed 
asteroid shapes, e.g. Toutatis, and may have some reality as the shape that results from slumping 
of an extremely elongate initial figure.  Since our static model does not really give us much 
insight into dynamical mass motions, we looked at successively less elongate initial figures until 
we found the limit for a prolate ellipsoid that has no slope exceeding the critical value.  For β = 
40°, this corresponded to a prolate ellipsoid with an axis ratio of 2.8:1.  From the similarity of 
this figure to the other figures, we infer that the most extreme length-to-width figure that can be 
sustained by a rubble pile is in the range of about 3:1 axis ratio.  This in fact is about what we see 
among the sampling of slowly rotating bodies, based on maximum lightcurve amplitudes, which 
typically don't much exceed about 1.2 magnitude among slowly rotating bodies, especially when 
corrected to zero phase angle to remove shadowing enhancement of the lightcurve amplitude.  
All three of the shapes in Figure 5 would have lightcurve amplitudes at zero phase and equatorial 
aspect of about one magnitude. 
 
One further investigation we carried out with the program was to see how flat of an oblate 
spheroid could sustain its shape with β  < 40°.  We started with δ = 1.0, that is not rotation, and 
explored a range of f < 1.0 to see how flattened an oblate spheroid could sustain its shape as a 
rubble pile.  We found that figures as flat as f = 0.21 (nearly 5 to 1 flattened) have surface slope 
everywhere under 40° and should not “landslide” toward a more spherical figure.  Since we are 
here exploring a range of figures with symmetry about the stable spin axis, we can further 
investigate the stability of sub-critically, but non-zero, spinning bodies.  For δ = 0.5, that is with 
centrifugal force equal to half of gravity at the equator, slope remains everywhere under 40° for 
figures all the way down to f = 0.10, that is, an oblate spheroid with polar dimension only one 
tenth the equatorial dimension.  We do not mean to suggest that such outrageously flattened 
figures exist in nature.  The important point of this exercise is to note the extreme range of 
shapes that can exist among “rubble piles” without landsliding to more regular shapes.  We infer 
from this that comparison of small asteroid shapes with “fluid equilibrium” shapes, and in 
particular inferring bulk densities of such bodies by comparison of actual shapes with fluid 
equilibrium shapes, is close to nonsense. 
 
4. Tidal saltation on a critically spinning binary body 
 
The asteroid (66391) 1999 KW4 is remarkable not only for its shape and constant slope profile, 
but even more so for the almost exact cancellation of gravitational and centrifugal accelerations 
at the equator.  Indeed, the current spin of 1999 KW4 corresponds to about the value of δ = 0.01 
used in our calculations in Section 3.  This seems too close to be coincidental, leading to the 
hypothesis that the primary of the system has been spun up over time, presumably by YORP 
torque, to the point of landsliding of material toward the equator, and then in some way shedding 
mass which re-accumulates in orbit to for a secondary.  Perhaps even the growth of the 
secondary has been gradual over time as additional mass is shed.  It is not the purpose of this 
paper to investigate the mechanism of mass shedding, but what we now direct our attention to is 
the fact that in a close binary system, like 1999 KW4 and other small asynchronous binaries, the 



gravitational acceleration on the primary is not constant, but in fact varies with the "diurnal" tide 
from the secondary.  This variation, while small in magnitude, could in fact induce a major 
variation in the net acceleration vector along the equator, where the static component of gravity 
is already very nearly cancelled by centrifugal acceleration.  Indeed, if the amplitude of the tidal 
acceleration were to be close to the factor δ of the constant gravitational acceleration, then a 
particle on the surface at the equator would feel the total acceleration vector go to zero as the 
satellite passed overhead.  Any greater and it would become upward, resulting in the particle 
levitating off the surface.  Our goal in this section is to explore this case and investigate the 
resulting particle motions near the equator, which we call “tidal saltation”. 
 
We consider only two-dimensional motion, in the equatorial plan of the primary, which is also 
assumed to be the plane of the orbit of the satellite.  Let the rotational spin velocity to be ω and 
the orbit frequency be Ω.  In a polar coordinate system (r,θ) centered at the CM of the primary 
and rotating with it (so a rock sitting still on the surface has constant coordinates), the equations 
of motion are: 
 
                                                      rTgrr +−=+− 2)( θω &&& ,                                                           (2) 
 
                                                         θθωθ Trr =++ )(2 &&&& .                                                             (3) 
 
g is the gravitational acceleration from the primary, and Tr and Tθ are the tidal accelerations from 
the secondary, in the radial and tangential directions, respectively.  Since the satellite is moving 
in this coordinate system, the tidal acceleration varies with a frequency of (ω - Ω).  The orbit 
frequency is: 
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where m is the mass of the satellite, and a is the orbit radius.  The tidal accelerations are: 
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where we have introduced the angle α = (ω-Ω)t + θ, which is the angle from overhead of the 
satellite at the time t.  These equations reduce to the usual quadripole tidal expressions when a 
>> r (but note that the expressions in brackets reduce to zero to first order so that one must carry 
second-order terms to yield the usual cos(2α) and sin(2α) dependences.  Even when a is not 
much greater than r (essentially, R), the tidal terms remain “diurnal” with extremes twice per 
“day”.  The above expressions are approximate in that we have assumed a spherical 
secondary figure rather than a triaxial ellipsoid one. However, expressions appropriate for a 
triaxial ellipsoid fit to the secondary of (66391) 1999 KW4 produce insignificant deviation in  
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Figure 6.  Radial and tangential tidal accelerations at the equator 
of the primary scaled appropriately for the separation of the 
(66391) 1999 KW4 binary. 

results from the above much 
simpler approximate 
expressions.   Figure 6 is a 
plot of the radial and 
tangential accelerations for 
a/R = 3.33, appropriate for 
(66391) 1999 KW4, on the 
equator and on the surface, r 
= R.  Note that the tidal 
accelerations for this value of 
a/r, typical for asynchronous 
binaries, are about twice 
larger on the satellite side of 
the primary than on the back 
side.  We will see that the 
onset of mass flow is so 
critically tuned to the 
magnitude of the tide that for 
such asynchronous binaries 
tidal saltation probably occurs 
only on the satellite-facing 
side of the primary. 
 
We are interested in the case where g ≈ ω 2R, so we make the substitution using 

δ
 as given in 

equation (1).  However, for a particle which might levitate off the surface so that r ≠ R, we need 
to account for the variation in g with r: 
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where it will be more convenient in what follows to use the right hand approximation, valid 
when δ  << 1.  We further introduce another small quantity ε to replace the coefficients of the 
tidal accelerations in (5) and (6): 
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With this definition, when ε = δ, the tidal acceleration on a stationary particle sitting on the 
equator directly under the satellite almost exactly cancels the differential acceleration (gravity 
minus centrifugal).  Thus the range of interest to explore will be within a small range of ε ≈ δ. 
Our goal is to evaluate this motion over a range of values of δ and ε.  As an example, we can 
evaluate values of δ and ε for the well-characterized binary asteroid (66391) 1999 KW4.  Ostro 
et al. (2006) give values of Porb = 17.4223 h; Prot = 2.7645 h; m = 0.135 and M = 2.353 (1012 kg); 
and a/R = 3.33.  These constants lead to a value of ε = 0.00455. δ  is somewhat harder to 
evaluate, since the gravity field is irregular on the scale of δ.  However, Scheeres et al. (2006) 



state that "a rotation period only 1.3% shorter would place portions of Alpha's surface at orbital 
speeds."  Thus, we can infer that Prot/Pcrit ≈1.013, and thus δ ≈ 0.026.  In the idealized case of a 
completely regular surface, the current tidal accelerations on (66391) 1999 KW4 are insufficient 
to result in mass levitation, but local irregularities might lead to some motions even presently. 
 
Equations (2) and (3) can now be written in terms of the small quantities we have defined: 
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The equations become somewhat simpler for the case of motion (or no motion) confined to the 
surface of the body, where r = R: 
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The above equations are valid as long as the test mass is on the surface, and the acceleration 
vector, r&& , is negative, that is with a net acceleration downward.  In such a case, of course, the 
actual radial acceleration of the particle is resisted by the surface of the primary and is zero.  But 
equation (11) remains the critical test for levitation:  as long as r&&  ≤ 0, the motion is confined to 
the surface.  Once the particle levitates, then r&&  can (and will) become less than zero.  The critical 
test then for free flight is whether r > R.  Thus, equations (9) and (10) govern the motion of the 
test particle in flight; equations (11) and (12) govern sliding motion on the surface.  Equation 
(11) can be further simplified for the static case, where the test particle is not even sliding.  In 
such a case θ&  is also zero, so the first two terms on the right reduce to –δ ω 2R: 
 

                          








−+
−+−−=

2/32
22

]cos)/(2)/(1[

cos/
cos

α
ααεωδω
aRaR

aR
RRr&& .                           (13) 

 
This simplified form of (11), combined with (12), can be used to determine whether the 
tangential acceleration is great enough to trigger sliding motion: 
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where µs is the coefficient of static friction.  This relation is simply the definition of µs, but 
provides the recipe for testing for the onset of sliding motion in terms of the radial and tangential 
forces θ&&&& Rr  and .   In determining if mass motion occurs, this relation only makes sense, of 



course, if r&&  is less than zero, that is, pointing down.  Here we are considering the case of a level 
surface subject to an acceleration vector that deviates from vertical.  This is exactly analogous to 
considering a sloping surface with respect to a vertical acceleration vector, as exists for example, 
for a sloping field of loose rubble formed by a landslide. The condition for stability against 
landsliding is often stated in terms of the maximum slope that a material such as sand, loose rock, 
or whatever can withstand before landsliding occurs.  This angle is sometimes called the angle of 
slide, ss µβ =tan .  A similar angle, the angle of repose, βr, is the slope at which a landslide stops, 

or comes to rest.  This angle is related to the coefficient of sliding (kinetic) friction, kr µβ =tan , 

which we will use in the equation of sliding motion.  For typical dry rubble on the Earth, the 
angle of repose is around 35°.  The angle of slide is typically 5° to 10° greater.  Thus, we will 
take as nominal values βr = 35° and βs = 42°, corresponding to µk = 0.7 and µs = 0.9, although 
we retain them as parameters that can be set to different values.  The picture that is on the cover 
of the issue of Science with the Ostro et al. and Scheeres et al. papers in it is in fact a map of 
exactly this slope of the surface of the asteroid 1999 KW4 with respect to the local acceleration 
vector.  The fact that almost the entire surface is a uniform green, corresponding to a slope in the 
35-40° range indicates that (a) the surface is in a sort of "landslide equilibrium", just short of 
further mass motion, and (b) an angle of repose around 35° is apparently about right for the 
material composing 1999 KW4. 
 
One further set of equations is needed, to describe the "landslide" state of motion, where the 
condition (14) is met or 0≠θ& , but r&&  < 0 and r = R, thus the tests mass is on the surface, but 
should begin (or continue) sliding.  Once sliding motion is initiated, µs is not relevant; the test 
mass continues sliding until either r&&  becomes positive and the mass levitates into free flight, or 
if it is decelerating until it skids to a halt.  The usual formulation for sliding motion is to 
parameterize the resisting force (acceleration) in terms of a coefficient of kinetic friction, µk.  
The resisting force in the tangential direction is µk times the "weight" of the object, thus the 
retarding force (acceleration) on the mass is just equal to rk &&µ , in the tangential direction 

opposing θ& .  Thus we have: 
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Keep in mind that r&&  is a negative quantity, so the second term is in a direction opposing θ& .  µk is 
always less than µs. That is, resistance is less once sliding begins, as anyone who has driven a car 
in a skid knows. 
 
We now have collected all the necessary equations to describe the mass motion, if any, of 
material along the equator of an asynchronous binary.  For chosen values of δ, ε , µs and µk, one 
can test for a given value of α using (14) to determine if a particle is stable against any sliding 
motion.  For µk = 0.9 and the current values of δ and ε, 1999 KW4 is stable against mass motion 
for any value of α.  However, a very slight change in spin period due to YORP acceleration 
could change that.  Following the onset of sliding motion, equation (15) applies to track the 
tangential position and velocity.  Equation (11), using the integrated value of θ& , must be 
monitored to determine if levitation occurs ( 0>r&& ).  If this occurs, then equations (9) and (10) 
apply, which can be integrated for free flight motion as long as r > R.  When the test mass falls 



back to the surface, we assume the vertical velocity, r& , is immediately damped to zero, but the 
tangential velocity, θ&R , continues, and the sliding motion equation (15) is used to continue 
following the motion.  Whenθ&R  reaches zero, motion stops and the integration is over. 
 
Figure 7 is a plot of the motion of a particle, starting out from rest on the equator of a sphere 
spinning at close to the critical rate, with values of δ  ≈ 0.005.  This range was chosen because the 
resulting differential acceleration at 
the equator (gravity minus 
centrifugal), δ g, is in the range of the 
current maximum radial tidal 
acceleration, Tmax (at α = 0, from eq. 
5 and Fig. 6) for 1999 KW4.  What 
determines the nature of the motion 
(or lack thereof) of a particle is the 
ratio of the maximum tidal 
acceleration to the differential 
acceleration, Tmax/δ g.  This ratio is 
proportional to ε /δ , and for the 
constants we have used for 1999 
KW4, are almost equal, that is, 
Tmax/δ g = 1.0 corresponds to ε /δ  = 
0.96. In Fig. 7 we plot trajectories for 
Tmax/δ g = 0.9, 1.0, and 1.1, in each 
case holding ε  = 0.00455, and 
adjusting δ  to obtain the listed value 
of Tmax/δ g.  This calculation was done 
for R = 0.75 km (the equatorial radius 
of 1999 KW4), but we found that the 
linear motion scales linearly with R, 
all other constants being the same.  
That is, on an asteroid with 1.5 km 
radius, the motions would be twice as 
large for the same value of Tmax/δ g.  
Recall that for Tmax/δ g < 1.0, a static 
particle would remain on the surface.  
We found, however, at a value of 
Tmax/δ g as low as 0.76 the test particle 
would begin to slide on the surface in 
the direction of the tidal force.  
Remarkably, almost as soon as the 
onset of sliding motion, the added 
velocity of the particle along the 
surface would result in an increase in 
centrifugal force enough to result in 
levitation of the particle and a period 
of free flight before falling back to 

 
Figure 7.  Motion of a particle on the equator of a 
near-critically spinning sphere.  See text for 
description. 

 
Figure 8.  Motion as seen in coordinates rotating with 
the satellite.  Radial height exaggerated 300 times.  
Only the path for Tmax/δ g = 1.0 is shown. 



the surface.  So even with a value of Tmax/δ g = 0.84 there is a small period of free flight, and for 
Tmax/δ g = 1.0 it is a quite substantial “hop”.  In the figure, the satellite rises from the left, moves 
overhead, and sets to the right.  Motion begins with sliding motion toward the left (red box 
symbols), followed by levitation into free flight (blue circles) rising up and moving back toward 
the right, then falling back to the surface to the right (behind except for the case of very limited 
motion) where the particle started out (more red boxes).  The scale here is in units of 10-5 radii of 
the body, thus for a 1 km radius body, the scale would be in centimeters.  Thus, for Tmax/δ g = 1.0, 
a particle would levitate 6 cm or so above the surface and land back 10 cm or so behind where it 
started.  For Tmax/δ g = 0.9, the levitation would be only a centimeter or two, and that particle 
would come to rest very close to where it started.  For Tmax/δ g = 1.1, the scale of the motion is 
more than twice greater than for Tmax/δ g = 1.0, so it is clear that the onset of motion is very sharp 
with increasing tidal strength (or decreasing spin-gravity differential). 
 
Figure 8 is a plot of the same particle motions, but in polar coordinates rotating with the satellite.  
So in this view, the satellite is always to the left, as shown, and the primary is rotating 
counterclockwise below it.  In order to show the radial levitation at all, we have exaggerated the 
radial scale of the particle above the surface by a factor of 300.  Only one path is shown, for 
Tmax/δ g = 1.0, for clarity.  As expected, the onset of motion is near the maximum tangential tidal 
acceleration, around 45° before the satellite passes overhead.  But the end of motion continues to 
about 90° after the satellite passes overhead, and in fact the interval of levitated motion peaks 
well past the overhead point.  This results in a geometry exactly like a tidal lag, with the result 
that there should be a torque transferring angular momentum from the primary spin to the 
satellite orbit, exactly as results from tidal friction.  But in this case, the tidal lag angle is much 
larger than for a solid body tide, and the scale of motion (centimeters for a km-size body) is 
much larger than tidal flexing of such a small elastic body.  However, the mass involved in this 
motion may be much less than the whole mass of the primary, so the actual rate of torque 
transfer will depend critically on the amount of mass involved in this motion. 
 
It is important to note, however, that unlike tidal friction, which is nearly independent of the spin 
rate of the primary, this process is very sharply dependent on spin rate, and in fact shuts off 
entirely at only a little under the critical spin rate.  Thus, if tidal friction were the dominant 
torque present, we would expect the primary to spin down as angular momentum were 
transferred to the secondary.  In contrast, the “tidal saltation” process works effectively only very 
near the critical spin, so if YORP is also acting to spin the primary up, tidal saltation serves only 
to “put the brakes on” very close to the spin limit, but does not slow it down much below the 
critical rate. 
 
We can evaluate the energy loss per unit mass in motion, which could then be used to estimate 
the torque transfer.  The sliding energy loss is just the resisting force, rk &&µ , integrated over 

distance, θdR , thus ∫=∆∆ θµ d/ RrME k &&  over the range of θ of the sliding motion, both before 

and after any period of levitation.  In free flight, energy is conserved, but on impact, the energy 
associated with the vertical component of motion, 2/2

impr& , is lost.  Thus the total energy lost per 

cycle is: 
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By tracking the energy lost per cycle we can evaluate the equivalent of "tidal friction" leading to 
the slowing of the spin of the primary and the expansion of the orbit of the satellite.  The tricky 
part is estimating the amount of mass ∆M that participates in the motion.  We have not attempted 
to do this, as one would need a proper hydrocode integrator with suitable equations of state to 
describe the motions of particles under the surface, rather than just a simple “sliding particle on 
the surface” model.  It seems apparent to us, however, that the process we show here is very 
sensitive to the quantity ε /δ , so if a slow process like YORP is continuously adding angular 
momentum, thus increasing the value of ε /δ , the onset of mass motion on the surface will start 
transferring the accumulating angular momentum so that a quasi-equilibrium will be established 
at whatever value of ε /δ  results in transferring momentum at the rate it is received by YORP. 
 
Conclusion 
 
Obviously, this is an unfinished work.  The shape and landsliding study uses a purely static 
model.  We do not attempt to realistically model the dynamical process of mass motion once a 
“landslide” is initiated.  On a nearly critically spinning body a “landslide” toward the equator 
would no doubt take on a cyclonic sort of motion due to the coriolis force.  Whether such a 
landslide would result in a discrete fission event to form a satellite or a slow mass shedding is 
beyond our simple algorithm to determine.  Likewise, our simple model of sliding friction on the 
surface and levitation into free flight (orbital) motion provides a “cartoon” of a process, which 
we have called “tidal saltation”, that we suspect serves to transfer angular momentum from 
primary spin to satellite orbit, analogous to the process of tidal friction.  This process appears to 
be capable of regulating the gain of angular momentum by a satellite system by YORP effect, 
and hold the primary near the critical spin limit. 
 
But what happens next?  After the satellite recedes a certain distance, the tidal interaction will 
become too weak to levitate mass off the surface.  Perhaps at this point the primary will over-
spin, experience more landsliding, and create another satellite, by mass shedding or fissioning.  
Two very recent discoveries bear on this matter.  One is the discovery of a regular system of two 
satellites about the NEA 2001 SN263 (Nolan et al. 2008).  Perhaps what we see here is one 
satellite that has receded too far to be effective in controlling the continuing gain of angular 
momentum, so the primary overspins and creates another inner satellite.  The other fascinating 
discovery is a significant number of pairs of asteroids in extremely similar heliocentric orbits, 
suggesting a common origin from a single, or binary, body in the last few tens of thousands of 
years (Vokrouhlicky and Nesvorny 2008).  It appears that these may be “divorced” binaries that 
have come apart by gravitational processes such as described by Scheeres (2007).  The fact that 
we actually see multiple examples with such short lifetimes suggests that binary formation and 
evolution among small asteroids is a very dynamic process and that most systems we currently 
see are very young.  
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