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Abstract

We examine the shape of a "rubble pile" asteroid as it slowly gains angulamntuomby YORP
torque, to the point where "landsliding” occurs. We find that it evolves to a "top" shthpe
constant angle of repose from the equator up to mid-latitude. A similar caloutatia non-
spinning, extremely elongate rubble pile body suggests that it should collapseiraagh
shape of a prolate ellipsoid of about 2.5:1 axis ratio. We also investigate tleffdades of a
binary system with a "top shape" primary spinning at near the criticafdnstability. We find
that very close to the stability limit, the tide from the secondary canligdaiatate loose debris
from the suface and re-deposit it, in a process we call “tidal saltation”, satcangular
momentum is transferred from the primary spin to the satellite orbit, thutamang the
equilibrium of near-critical spin as YORP continues to add angular momenttwn sgstem.

1. Introduction

In the recen&cience papers by Ostro et al. (2006) and Scheeres et al., (2006) the asteroid
(66391) 1999 KW4, shown in the cover illustration, is remarkable in having an almastritons
surface slope, in the range of 30>3&lmost uniformly in the direction of the equator. The
explanation appears to be that as 1999 KW4 is spun up by YORP, the local slope incréases to t
critical angle for land-sliding, which moves material toward the egaaidre-establishes an
equilibrium with the average slope of the surface being the angle of reposk farhinost dry

loose material is around 30-35The "top" shape appears to be the figure of quasi-equilibrium of
a body that is spinning at a rate that is critical at the equator (gravégtrifugal force), and has

a constant slope at other latitudes, except for the poles, which would be pointedsethamad/

the equator, where slope must pass through zero. Indeed, the detailed shape of tHiefwgure a
us to infer the critical angle of slide of the regolith. In the first pattiiefpaper we calculate the
static figure of constant slope to compare with the radar-derived shape of 1989 KW

A second remarkable feature of 1999 KW4 is the extremely regular equatorial b&stdisv
within about 1% of cancellation of gravity by centrifugal force. We suggesthtisaequilibrium
is established by tidal forces from the satellite moving regolith around theoeqlrathe second
part of this paper, we develop the equations of motion for material near the eiqjtia¢or
rotating frame of the primary, including tidal force from the secondary andghdction as
material starts to move. We present numerical integrations of suchnmotisa to show that it
results in a sort of "tidal torque" between the primary spin and the satellit¢hatitransfers
angular momentum to the satellite orbit, potentially much more rapidly thiarb®dy tides.

We are motivated in these studies by the fact that (66391) 1999 KW4 is not unique in these
characteristics, indeed, it seems to be the archetypical case ohahraspus binary system.



Many of the systems observed are found to have primaries with very low ampgtudarves
(e.g., Pravec et al. 2006), indicating nearly circular equatorial profiles, am@puit periods very
near the critical limit (Pravec and Harris 2007). Radar observations of a mohiNeA
asynchronous binary systems likewise indicate primaries with veryaregmiatorial profiles
and spins near the critical limit (e.g., Shepetrdl. 2006).

2. Congtant-slope shape of a critically spinning body

The equilibrium figures of uniformly rotating fluids has been well studied (e.g., Ciseidhar
1969). Up to a certain critical spin rate, the equilibrium figure of a homogenealisfan
oblate spheroid, a so-called Maclauren spheroid. At higher spin rates, an equiiftzkish
ellipsoid figure exists, called Jacobi ellipsoids, up to a point where there is ibraquifigure
that can contain more angular momentum, and a body with still more angular mammenst
fission in some manner to become a binary. These shapes are hardly relevaall f&olsn
asteroids, even ones that are "rubble piles”, with no tensile strength. The rehabevstrt
strengthless rubble can sustain a slope against the pull of gravity, justras@le does not
flow like water but rather relaxes into a conical form with a rather consti@pe, typically in the
range of 33 or so. Thus we expect that the figure of a spinning asteroid can deviate from
equilibrium (zero slope) by up to some critical angle before slumping (landslatng)s.

A brief digression into the subject of soil mechanics is in order. Geologigte teb angles
relating to the slope of rubble or other loose material. These anglesaded telthe coefficients
of sliding (kinetic) friction and of static friction for the material. The dbod for stability
against landsliding is the maximum slope that a material such as sand, those vehatever
can withstand before landsliding occurs. This angle is calleahtile of dide, related to the
coefficient of static frictiontans, = 4. A similar angle, thangle of repose, 3, is the slope at

which a landslide stops, or comes to rest. This angle is related to the eaefifcsliding
(kinetic) friction: tanB. = 1, . The coefficient of sliding friction is always less than the

coefficient of static friction (traction decreases once sliding ststa person driving in a skid
discovers). For typical dry rubble on the Earth, the angle of repose is in the rafg®D8S.
The angle of slide is typically’Go 10 greater. Thus nominal valugs= 35 andf =42
correspond ta4 = 0.7 andus = 0.9.

To model the quasi-equilibrium shape of a rubble pile, we first define a relatiwedn the
gravitational acceleration at the equatprand the centrifugal force due to rotational spin:

WR=(1-3)g = L~ O)ufR, 1)

wherewis the angular frequency of rotation @ the equatorial radius of the bods is the
critical spin frequency at which acceleration igozdor a spheref =GM / R?, but for a non-

spherical body, it will differ a bit due to grauianal harmonics. The paramet®is chosen such
that the net acceleration at the equata@r temes the gravitational acceleration, anddor O

acceleration vanishes. In terms of spin rate,1-(w/ @,)?, or w/ w, =~1-3J. Itis instructive
to consider the local slope versus latitude fgoleese for various values @f This can be



computed analytically,
which we have done in
Figure 1. At the critical R PN L L L AL A
spin rate, local slope is jUSt go 0.001 Centrifugal acceleration at equator = (1-d)gravity
equal to the co-latitude.
Note that slope begins to
exceed a critical value of
around 40 at a value od =
0.2, which translates to a
spin rate ofw/wy = 0.9.
Thus, we expect that an
initially spherical "rubble
pile" with a typical angle of
repose would begin to
experience landsliding as it
were gradually spun up
upon reaching about 90%
of the critical spin ratew. Latitude
This is consistent with the
calculations of Holsapple
(2004). However, in the
last 10% of spin-up, slopes reach extreme valhes,we expect slumping to occur. The onset
should be in the mid-latitude range, aroun&2@, and with increasing spin should progress all
the way to the equator quite rapidly. Note thaw/dhill" is always toward the equator, so
slumping will only occur at latitudes less than whslope exceeds the critical value.

Slope vs. latitude for a nearly-critically spinning sphere

Slope

Figure 1. Slope vs. latitude for various value®.of

In order to compute quasi-equilibrium figures of a

spinning body, we wrote a fairly simple program to

numerically evaluate the gravity acceleration veato

the surface of a longitudinally symmetric body. We

start with an oblate ellipsoid with flattenifg c/a in

the polar dimension, wheoas the polar dimension and

ais the equatorial dimension. We break the body up

into cubic cells of 1/50 the equatorial dimensitbrus

for a sphere, we have a little over half a millmass

elements. We compute the acceleration of gravity a

each degree of latitude on the body by adding ap th

acceleration from each of the individual "cubestratss.

We then compute local slopes, for a set value bhde

We proceed iteratively, modifying the slope at any

latitude where the value exceeds the critical véadue

lower value in the direction of the equilibrium catthen

we integrate the slopes starting from the equator t

determine a new shape profile. Since the accedaraf Figure 2. Shape with constant
gravity changes with shape, we must iterate several  slope= 35 at all latitudes, and
times to obtain convergence to a shape with constan equatorial acceleratiodi= 0.01.




slope. Our first test of the program was to spyezi€ritical slope of zero corresponding to a

fluid body, which should result in a Maclaurensibid. We confirmed that we did get this
result, and we verified the flattening of the cotgalellipsoid at our chosen valuedivith that
given by Chandrasekhar (1969) for an analyticadipputed Maclauren ellipsoid. For our first
real calculation, we started from a sphere, chas@ieal slopef = 35, and assumed a value of
0=0.01. We chose a non-zero valuedai order to avoid the singularity of surface aecafion
going completely to zero at the equator. The pmogranverged on the shape shown in Figure 2.
This shape is not too realistic, for one thingas la greater moment of inertia about an axis
through the equator than

through the pole, so the .0 —m—rr-r-r-r-rr-r-r-TrTrrTTTrTTr T T

stable rotational spin i T j
state would be about an [ //7 — <X ]
axis through the equator. - // \\ T
More importantly, 05T / / W i
though, starting from a < - %’ \\ .
sphere, evolution to this 2 [ —  Slope = 45° i
shape would involve £ ol — — Slope = 40° _
"landsliding" uphill at e - = e 7
higher latitudes, since as 2 - / i
can be seen in Figure 1, X \ /// 4
the slope in the initial 051 \\\ // ]
spherical figure as less I NS -~ 4/ ]
thang at latitudes i S o= i
greater than about the qol 4 v v v b
compliment ofg. -1.0 -0.5 0 0.5 1.0

Equatorial dimension

To fix this problem, we  Figure 3. Figures of constant slope from the emuap to a
introduced a constraintir |atitude approximately equal to the complimenthef ¢ritical

the program to hold the  gjope angle, such that "landsliding" uphill is petmitted.
figure constant at

latitudes greater than a specified value. As the
figure adjusts from an initial shape (we chose a
sphere for our main calculations), the polar
dimension shrinks down and the equatorial
dimension expands, and in the process the slope
higher latitudes decreases a bit, even if the shape
the "polar cap" is not changed. Thus we found th:
we had to tinker a bit with the latitude constramt
order to end up with figures that blended smoothly
from constant slope at the chosen valug tf the
decreasing slope at higher latitudes. Figurea3sist
of figure profiles at equatorial aspect for a numtfe
slope values spanning the range of typical "rubble
materials. These "nut-shaped"” profiles look
satisfyingly similar to the shape profile of (66391
1999 KW4, as can be seen in Figure 4, comparing

Figure 4. Constant-slope figure for
critical slope of 37 compared to shape
of (66391) 1999 KW4 (shape profile
from Scheeres et al. 2006).



the actual shape to the slope = B¥del. It must be noted that due to smaller sScadgularities
it is not possible to estimate the critical slopgla closer than arouneb°.
3. Constant-g ope shape of a non-spinning body

After experimenting a bit with the program, it oo@d to us that the same program could be
used to address the question of the maximum elmmgat a non-spinning rubble pile body. If
we imagine an extremely elongated "cigar-shapedy ot spinning at all, the direction of
local gravity at the surface will deviate from "treal" by more than the allowed critical slope,
and landsliding should occur, tending to collapeeliody in the direction of a sphere. The
guestion we ask is, how elongate can a body betihdot have slopes anywhere exceeding the
critical slope angle? To investigate this, we sard= 1.0, corresponding to zero centrifugal
force, hence a non-spinning body, and start witmgial figure with “flattening"f > 1,
corresponding to a body with polar dimension gnretitan the equatorial radius. This is of
course perpendicular to the axis arrangement lafvelysspinning prolate ellipsoid, but does not
matter since we are considering a body with no apadl. Somewhat to our surprise, the
program worked fine with values bf> 1, even though we had not coded it with thegrition.
Figure 5 is a plot of some results. We have rdttte figure 90to correspond to a prolate body
rotating slowly (not at all, in fact) about its shaxis. We made a first run starting from a 5:1
elongate body, that is, wifhe 5. In this case, it is the polar region that smpe greater than the
critical value, so landsliding occurs from the lamgs toward the "equator” (the short
dimension), but does not extend down to the equaide first calculated an unconstrained
figure, starting from a 5:1 prolate ellipsoid, wléhe final equilibrium figure has a constant
slopef = 40 everywhere, regardless of "landsliding uphill".biAlobed figure, which is
analogous to the unconstrained shape in Figure 2 éatically spinning body, resulted. We next
constrained the shape not to change in the rahggetifne near the "equator") where slope was
initially under the

critical value. The 4
"torpedo” shaped - Initial prolate ellipsoid, axis ratio = 5.0
figure is what results 3| unconstrained solution
when we start from the — = |Initial prolate ellipsoid, axis ratio = 5:1
) B constrained solution
same 5:1 prolate — — |Initial prolate ellipsoid, axis ratio = 2.8:1
ellipsoid. Mass is not < 25 constrained solution
conserved in these @ -
: )
calculatlons_. Instead_ E 1k o
the equatorial (polarin 2 N
. . © -
this rotated view) o / \
dimension is held to a o
constant value of 1.0 - \
in the calculation. In 1k D I

the figure, the
unconstrained (bi-

Al s 5
lobed) solution is re 2 3 5 - . : . L .
scaled to match the

length of the Equatorial dimension

constrained solution.  Figure 5. Constant-slope figures of prolate, naating bodies. See
In both solutions, the  text for complete description.



length to width ratio shrinks down to about 3:IheTodd shape of the bi-lobed solution appears a
bit artificial, since we have constrained the "waid the figure to remain constant, yet matter
must cascade down into that region from the lordgemhus, the unconstrained bi-lobed shape
is not as unphysical as the shape in figure 2essome (maybe all) of the mass motion in the
equatorial range is not "up hill". The bi-lobedpbk is somewhat suggestive of some observed
asteroid shapes, e.g. Toutatis, and may have seatigyras the shape that results from slumping
of an extremely elongate initial figure. Since static model does not really give us much
insight into dynamical mass motions, we lookeduatsssively less elongate initial figures until
we found the limit for a prolate ellipsoid that hasslope exceeding the critical value. Bor

40°, this corresponded to a prolate ellipsoid withaais ratio of 2.8:1. From the similarity of

this figure to the other figures, we infer that thest extreme length-to-width figure that can be
sustained by a rubble pile is in the range of aBdlibxis ratio. This in fact is about what we see
among the sampling of slowly rotating bodies, basedaximum lightcurve amplitudes, which
typically don't much exceed about 1.2 magnituderagsbowly rotating bodies, especially when
corrected to zero phase angle to remove shadowimgeement of the lightcurve amplitude.

All three of the shapes in Figure 5 would havetlighve amplitudes at zero phase and equatorial
aspect of about one magnitude.

One further investigation we carried out with tmegram was to see how flat of an oblate
spheroid could sustain its shape with< 40°. We started witld= 1.0, that is not rotation, and
explored a range df< 1.0 to see how flattened an oblate spheroiddcsustain its shape as a
rubble pile. We found that figures as flatf&s0.21 (nearly 5 to 1 flattened) have surfaceeslop
everywhere under 4@nd should not “landslide” toward a more sphefiicalre. Since we are
here exploring a range of figures with symmetrywlibe stable spin axis, we can further
investigate the stability of sub-critically, butmaero, spinning bodies. Fér= 0.5, that is with
centrifugal force equal to half of gravity at thguator, slope remains everywhere undérfé0
figures all the way down tb= 0.10, that is, an oblate spheroid with polaretsion only one
tenth the equatorial dimension. We do not meaugmest that such outrageously flattened
figures exist in nature. The important point agtéxercise is to note the extreme range of
shapes that can exist among “rubble piles” withantisliding to more regular shapes. We infer
from this that comparison of small asteroid shapés “fluid equilibrium” shapes, and in
particular inferring bulk densities of such bodigscomparison of actual shapes with fluid
equilibrium shapes, is close to nonsense.

4. Tidal saltation on a critically spinning binary body

The asteroid (66391) 1999 KW4 is remarkable nog @l its shape and constant slope profile,
but even more so for the almost exact cancellatf@ravitational and centrifugal accelerations

at the equator. Indeed, the current spin of 19@8H€orresponds to about the valuedef 0.01
used in our calculations in Section 3. This semmglose to be coincidental, leading to the
hypothesis that the primary of the system has bpan up over time, presumably by YORP
torque, to the point of landsliding of material e the equator, and then in some way shedding
mass which re-accumulates in orbit to for a second@erhaps even the growth of the
secondary has been gradual over time as additioass is shed. It is not the purpose of this
paper to investigate the mechanism of mass shedalimgvhat we now direct our attention to is
the fact that in a close binary system, like 1989&and other small asynchronous binaries, the



gravitational acceleration on the primary is natstant, but in fact varies with the "diurnal” tide
from the secondary. This variation, while smalinagnitude, could in fact induce a major
variation in the net acceleration vector alongehgator, where the static component of gravity
is already very nearly cancelled by centrifugaledexation. Indeed, if the amplitude of the tidal
acceleration were to be close to the faétof the constant gravitational acceleration, then a
particle on the surface at the equator would teeltdtal acceleration vector go to zero as the
satellite passed overhead. Any greater and itdvbetome upward, resulting in the particle
levitating off the surface. Our goal in this sentis to explore this case and investigate the
resulting particle motions near the equator, whvehcall “tidal saltation”.

We consider only two-dimensional motion, in theaqual plan of the primary, which is also
assumed to be the plane of the orbit of the stgelliet the rotational spin velocity to beand

the orbit frequency b€. In a polar coordinate systemd) centered at the CM of the primary
and rotating with it (so a rock sitting still oretsurface has constant coordinates), the equations
of motion are:

F=r(w+6)*=-g+T,, (2)
ré+2r(w+6)=T,. (3)

g is the gravitational acceleration from the primanydT, andTy are the tidal accelerations from
the secondary, in the radial and tangential dioesti respectively. Since the satellite is moving
in this coordinate system, the tidal acceleratianes with a frequency otf- (). The orbit

frequency is:
G(M +m
0= /% , (4)

wherem s the mass of the satellite, amds the orbit radius. The tidal accelerations are:

T :—%(cosaw r/a-cosa J 5)

' a’ [1+ (r/a)? - 2(r / a) cosa]®?

T, =G—r2nSina[1— : J 6)
a

[1+(r/a)® - 2(r / a) cosa]®?

where we have introduced the angle (wQ)t + 6, which is the angle from overhead of the
satellite at the timé These equations reduce to the usual quadrijgaleaxpressions whem

>>r (but note that the expressions in brackets rettuzero to first order so that one must carry
second-order terms to yield the usual coy@nd sin(2) dependences. Even whars not

much greater than(essentiallyR), the tidal terms remain “diurnal” with extremedde per

“‘day”. The above expressions are approximateahw® have assumed a spherical

secondary figure rather than a triaxial ellipsamg oHowever, expressions appropriate for a
triaxial ellipsoid fit to the secondary of (66391999 KW4 produce insignificant deviation in



results from the above much
simpler approximate
expressions. Figure 6is a L L L
plot of the radial and

tangential accelerations for

a/R = 3.33, appropriate for
(66391) 1999 KW4, on the
equator and on the surface, «
=R. Note that the tidal
accelerations for this value of
alr, typical for asynchronous
binaries, are about twice
larger on the satellite side of
the primary than on the back
side. We will see that the _
onset of mass flow is so '
critically tuned to the 0 %0 180 270 360
magnitude of the tide that for a

such asynchronous binaries  Figure 6. Radial and tangential tidal acceleratianthe equatc
tidal saltation probably occurs of the primary scaled appropriately for the sepanadf the

only on the satellite-facing (66391) 1999 KW4 binary.
side of the primary.

Tidal accelerations for a/R = 3.33

)

T/(Gml/a

We are interested in the case whgren’R, so we make the substitution usihgs given in
equation (1). However, for a particle which migghtitate off the surface so thaf R, we need
to account for the variation mwith r:

a-09=RT| = a=arawq ] )

where it will be more convenient in what follows to use the right hand approximatioh, va
whend << 1. We further introduce another small quardity replace the coefficients of the
tidal accelerations in (5) and (6):

a’ M+mR| P

2
Ea)ZR:@ - g=_"1" a(h) . (8)
orb

With this definition, where = ¢, the tidal acceleration on a stationary particle sitting on the
equator directly under the satellite almost exactly cancels the diffdracceleration (gravity
minus centrifugal). Thus the range of interest to explore will be within a sangé ofe= .

Our goal is to evaluate this motion over a range of valuésantle. As an example, we can
evaluate values adandég for the well-characterized binary asteroid (66391) 1999 KW4. Ostro
et al. (2006) give values &, = 17.4223 hP;o: = 2.7645 hm = 0.135 andM = 2.353 (162 kg);
anda/R = 3.33. These constants lead to a value=00.00455.0 is somewhat harder to
evaluate, since the gravity field is irregular on the scat® ¢dowever, Scheeres et al. (2006)



state that "a rotation period only 1.3% shorter would place portions of Alpha'sesatfaibital
speeds.” Thus, we can infer tig§/Pgi; =1.013, and thug= 0.026. In the idealized case of a
completely regular surface, the current tidal accelerations on (66391) 1999 KWiddfieient
to result in mass levitation, but local irregularities might lead to sooteons even presently.

Equations (2) and (3) can now be written in terms of the small quantities we lfiaeelde

F—r(w+6)?=-@1+ J)afR(TRJ —sa)zR(cosa+ r/a-cosa j 9)

[1+(r/a)*-2(r / a)cosa]*?

ré+2r(w+6) :gafRsina(l— > ! 3/2) (10)
[L+(r/a)°—2(r/a)cosa]

The equations become somewhat simpler for the case of motion (or no motion) confireed to t
surface of the body, where=R:

. N2 _ R/a-cosa
F=R@+0) -1+ R EQJZR(COSCH[1+(R/a)2—2(R/a)cosa']3’2j’ (1)
R9=£a)2Rsina{1— > ! 3/2}' (12)
[1+(R/a)"—2(R/a)cosa]

The above equations are valid as long as the test mass is on the surface, aetetladi@cc
vector, I, is negative, that is with a net acceleration downward. In such a case, of ¢murse, t
actual radial acceleration of the particle is resisted by the swfdbe primary and is zero. But
equation (11) remains the critical test for levitation: as lonig 49, the motion is confined to

the surface. Once the particle levitates, thezan (and will) become less than zero. The critical
test then for free flight is whether R. Thus, equations (9) and (10) govern the motion of the
test particle in flight; equations (11) and (12) govern sliding motion on the surfgoatidn

(11) can be further simplified for the static case, where the test p#stiade even sliding. In

such a casé is also zero, so the first two terms on the right reducé@oR:

i'=-0w’R~ £afR(cosa + RZ/ 4= cosd — J : (13)
[1+(R/a)° -2(R/a)cosa]

This simplified form of (11), combined with (12), can be used to determine whie¢her t
tangential acceleration is great enough to trigger sliding motion:

R‘é‘ >—fu,, (14)

whereys is the coefficient of static friction. This relation is simply the migbn of /4, but
provides the recipe for testing for the onset of sliding motion in terms of tla¢ aadi tangential

forcesi andRé&. In determining if mass motion occurs, this relation only makes sense, of



course, ifi" is less than zero, that is, pointing down. Here we are considering the caseecdf a lev
surface subject to an acceleration vector that deviates from verica is exactly analogous to
considering a sloping surface with respect to a vertical acceleratitor, & exists for example,

for a sloping field of loose rubble formed by a landslide. The condition for stadmktiynst
landsliding is often stated in terms of the maximum slope thatarial such as sand, loose rock,
or whatever can withstand before landsliding occurs. This angle is sometieelstheangl e of

dide, tang, = u,. A similar angle, thangle of repose, 3, is the slope at which a landslide stops,

or comes to rest. This angle is related to the coefficient of sliding (Rifietimon, tanS, = 4, ,

which we will use in the equation of sliding motion. For typical dry rubble on the Haeth, t
angle of repose is around°35The angle of slide is typically %o 10’ greater. Thus, we will
take as nominal valugg = 35° andf = 42, corresponding tgg = 0.7 andus = 0.9, although
we retain them as parameters that can be set to different values. fline thiat is on the cover
of the issue oEcience with the Ostrcet al. and Scheerest al. papers in it is in fact a map of
exactly this slope of the surface of the asteroid 1999 KW4 with respect to thadoekeration
vector. The fact that almost the entire surface is a uniform green,pmordésg to a slope in the
35-4C range indicates that (a) the surface is in a sort of "landslide equillbjustshort of
further mass motion, and (b) an angle of repose arouhis 3pparently about right for the
material composing 1999 KW4.

One further set of equations is needed, to describe the "landslide" stateaof, wbere the
condition (14) is met 08 # 0, buti < 0 andr = R, thus the tests mass is on the surface, but
should begin (or continue) sliding. Once sliding motion is initigteds not relevant; the test
mass continues sliding until eithEérbecomes positive and the mass levitates into free flight, or
if it is decelerating until it skids to a halt. The usual formulation for slidiegon is to
parameterize the resisting force (acceleration) in terms of aaeaffof kinetic friction L.

The resisting force in the tangential directiopsigimes the "weight" of the object, thus the
retarding force (acceleration) on the mass is just equalitoin the tangential direction

opposingd. Thus we have:

” : 1 0

RO = sa/Rsina| 1- + U0 15
( [1+(R/a)?-2(R/a) cosa]mJ H \91 (13

Keep in mind that' is a negative quantity, so the second term is in a direction opp@sipgis

always less thaps. That is, resistance is less once sliding begins, as anyone who has driven a car
in a skid knows.

We now have collected all the necessary equations to describe the mass mantigrofif
material along the equator of an asynchronous binary. For chosen vadjes of andi, one
can test for a given value ofusing (14) to determine if a particle is stable against any sliding
motion. Foru = 0.9 and the current values®ande, 1999 KW4 is stable against mass motion
for any value ofo. However, a very slight change in spin period due to YORP acceleration
could change that. Following the onset of sliding motion, equation (15) applies to track the
tangential position and velocity. Equation (11), using the integrated valierofist be
monitored to determine if levitation occunis% 0). If this occurs, then equations (9) and (10)
apply, which can be integrated for free flight motion as long>aR. When the test mass falls



back to the surface, we assume the vertical velotitys immediately damped to zero, but the
tangential velocityRé, continues, and the sliding motion equation (15) is used to continue
following the motion. WheR@ reaches zero, motion stops and the integration is over.

Figure 7 is a plot of the motion of a particle, starting out from rest on the equatepbére
spinning at close to the critical rate, with valueg &f0.005. This range was chosen because the
resulting differential acceleration at

the equator (gravity minus L L L L
centrifugal),dg, is in the range of the
current maximum radial tidal 150
accelerationTmax (ata = 0, from eq.
5 and Fig. 6) for 1999 KW4. What
determines the nature of the motion

§ T /8g=1.1

(or lack thereof) of a particle is the B__;“aieie.,e\
ratio of the maximum tidal ° ol S~
accelerat!on to the dlffe_rentlgl _ 50 f T 169=10 \\0
accelerationTna/dg. This ratio is S AN
proportional tce/d, and for the . /ng()g(e \\ A
constants we have used for 1999 %us"‘a* S- - Y

H 4 [ ™Y NI
KW4, are almost equal, that is, 0= o o 00 5o
Tmaddg = 1.0 corresponds &35 = o om

0.96. In Fig. 7 we plot trajectories foi
Tmadog =0.9, 1.0, and 1.1, in each
case holding = 0.00455, and
adjustings to obtain the listed value
of Tmaxdg. This calculation was done
for R=0.75 km (the equatorial radiu:
of 1999 KW4), but we found that the
linear motion scales linearly witR,

all other constants being the same.
That is, on an asteroid with 1.5 km
radius, the motions would be twice a
large for the same value ©f,.,/0g.
Recall that foiTa/dg < 1.0, a static
particle would remain on the surface
We found, however, at a value of
Tmaddg as low as 0.76 the test partic!
would begin to slide on the surface i
the direction of the tidal force.
Remarkably, almost as soon as the
onset of sliding motion, the added
velocity of the particle along the
surface would result in an increase i
centrifugal force enough to result in
levitation of the particle and a period
of free flight before falling back to

Figure 7. Motion of a particle on the equator of a
near-critically spinning sphere. See text for
description.

Figure 8. Motion as seen in coordinates rotating with
the satellite. Radial height exaggerated 300 times.
Only the path foilma/dg = 1.0 is shown.



the surface. So even with a valu€elgf,/og = 0.84 there is a small period of free flight, and for
Tmaog = 1.0 it is a quite substantial “hop”. In the figure, the satellite rises frohefthenoves
overhead, and sets to the right. Motion begins with sliding motion toward the left (red box
symbols), followed by levitation into free flight (blue circles) rising ng enoving back toward

the right, then falling back to the surface to the right (behind except for thefozesy limited
motion) where the particle started out (more red boxes). The scals hermits of 10 radii of

the body, thus for a 1 km radius body, the scale would be in centimeters. THyg/fy= 1.0,

a particle would levitate 6 cm or so above the surface and land back 10 cm or so behenid wher
started. Folma/dg = 0.9, the levitation would be only a centimeter or two, and that particle
would come to rest very close to where it started. Tr¥og = 1.1, the scale of the motion is
more than twice greater than fB./dg = 1.0, so it is clear that the onset of motion is very sharp
with increasing tidal strength (or decreasing spin-gravity differgntia

Figure 8 is a plot of the same particle motions, but in polar coordinates rotatnigpevgatellite.
So in this view, the satellite is always to the left, as shown, and the prinmatgtiag
counterclockwise below it. In order to show the radial levitation at all, wedxaggerated the
radial scale of the particle above the surface by a factor of 300. Only one pathnsfenow
Tmaddg = 1.0, for clarity. As expected, the onset of motion is near the maximum tangdatial t
acceleration, around 2before the satellite passes overhead. But the end of motion continues to
about 90 after the satellite passes overhead, and in fact the interval ofdeuitattion peaks

well past the overhead point. This results in a geometry exactly like aatiglavith the result
that there should be a torque transferring angular momentum from the prpimaty the

satellite orbit, exactly as results from tidal friction. But in tlaiseg the tidal lag angle is much
larger than for a solid body tide, and the scale of motion (centimeters for adimesly) is

much larger than tidal flexing of such a small elastic body. However, tb® imablved in this
motion may be much less than the whole mass of the primary, so the actual rajaeof tor
transfer will depend critically on the amount of mass involved in this motion.

It is important to note, however, that unlike tidal friction, which is nearly indepeémd¢he spin
rate of the primary, this process is very sharply dependent on spin rate, astcshuta off
entirely at only a little under the critical spin rate. Thus, if tidatitsh were the dominant
torque present, we would expect the primary to spin down as angular momentum were
transferred to the secondary. In contrast, the “tidal saltation” proceks @ftectively only very
near the critical spin, so if YORP is also acting to spin the primary up, titticalserves only
to “put the brakes on” very close to the spin limit, but does not slow it down much below the
critical rate.

We can evaluate the energy loss per unit mass in motion, which could then be usedte estim
the torque transfer. The sliding energy loss is just the resisting fayiceintegrated over

distance,Rd&, thusAE/AM = I|,uJ‘RdH| over the range ofl of the sliding motion, both before

and after any period of levitation. In free flight, energy is conserved, but on irtipaenergy
associated with the vertical component of moticﬁa,lz, is lost. Thus the total energy lost per

cycle is:



AE ) 1,
T ﬂ,uker6?|+Eri§p (16)

By tracking the energy lost per cycle we can evaluate the equivalent offfistiah” leading to

the slowing of the spin of the primary and the expansion of the orbit of the satellitérickipe

part is estimating the amount of magd that participates in the motion. We have not attempted
to do this, as one would need a proper hydrocode integrator with suitable equations of state t
describe the motions of particles under the surface, rather than just a shaohg ‘particle on

the surface” model. It seems apparent to us, however, that the process we shewdngre
sensitive to the quantitys, so if a slow process like YORP is continuously adding angular
momentum, thus increasing the value/éf the onset of mass motion on the surface will start
transferring the accumulating angular momentum so that a quasi-equiliiiiume established

at whatever value af¢ results in transferring momentum at the rate it is received by YORP.

Conclusion

Obviously, this is an unfinished work. The shape and landsliding study uses a purely static
model. We do not attempt to realistically model the dynamical process ohmées once a
“landslide” is initiated. On a nearly critically spinning body a “landisiitoward the equator
would no doubt take on a cyclonic sort of motion due to the coriolis force. Whether such a
landslide would result in a discrete fission event to form a satellite or av&e® shedding is
beyond our simple algorithm to determine. Likewise, our simple model of sliditigriron the
surface and levitation into free flight (orbital) motion provides a “cartoo’ mfocess, which
we have called “tidal saltation”, that we suspect serves to transfelaangomentum from
primary spin to satellite orbit, analogous to the process of tidal friction. pfbcgss appears to
be capable of regulating the gain of angular momentum by a satellite sys¥ORP effect,

and hold the primary near the critical spin limit.

But what happens next? After the satellite recedes a certain distartaggltheeraction will
become too weak to levitate mass off the surface. Perhaps at this poimnémy prill over-

spin, experience more landsliding, and create another satellite, by maddmgloe fissioning.
Two very recent discoveries bear on this matter. One is the discoverygoilar Igystem of two
satellites about the NEA 2001 SN263 (Nolan et al. 2008). Perhaps what we see here is one
satellite that has receded too far to be effective in controlling theaorg gain of angular
momentum, so the primary overspins and creates another inner satellitehditfascinating
discovery is a significant number of pairs of asteroids in extremeliasiheliocentric orbits,
suggesting a common origin from a single, or binary, body in the last few tens of thoofsands
years (Vokrouhlicky and Nesvorny 2008). It appears that these may be “divorcewthat
have come apart by gravitational processes such as described by S&@@atesThe fact that
we actually see multiple examples with such short lifetimes suggestsribat formation and
evolution among small asteroids is a very dynamic process and that mestsyst currently
see are very young.
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