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Editing and calibration

V ij t =∬ Al ,m I l ,me−2 i uij t  lvij  t mdl dm

● An Interferometer measures the visibility of 
antenna pairs (or on baselines)

● the term (ul+vm) gives the geometrical 
phase difference between the phase center 
(where the fringes are stopped) and the 
source

● the phase determines the location of a 
source

● the amplitude the strength



Editing and calibration

● Editing is basically just throwing out of bad 
data

● ...so one either has to have good automatic 
quality checks (phase jumps) and/or good 
visualization tools

● Calibration is correcting the data for meas-
urement errors



Measured in practice

V ij t =G ij t V ij t ij t ij t 
where

G ij t  is a baselinedependent complex gain
ij t  is abaselinedependent complex offset

ij t  is a stochastic noise term



Calibration

● One calibrates by observing a source of 
known structure – ideally, a point source – 
once in a while

● “once in a while” depends on the stability of 
the system

● instrumental part
● atmospheric part

● Compromise between calibrating often 
(good data quality) and calibrating rarely 
(observing efficiency)



Atmospheric stability



Calibration

● Other compromises:
● calibrator source should be strong 

● to get good S/N
● nearby

● to minimize dead time for moving telescope
● to have same atmospheric conditions



Phase dispersion

nondispersive part: ∝



Alternative: radiometric correction



Amplitude and phase calibration

● Baseline based
● natural – visibilities are measured on baselines
● tedious – for N antennas there are N (N-1)/2 

baselines, e.g. for ALMA with N=50 there are 
1225 baselines 

● not possible to do visually
● Antenna based

● most errors ARE antenna based
● choice for more than 5-6 antennas out of ne-

cessity



Calibration – baseline based

● For a point source with complex visibility S 
(i.e. Amplitude is S Jy and phase is 0), one 
gets

G ij t =
V ij t 

S
if

ij t andij t canbe neglected



Phase and Amplitude calibration

● This G
ij
(t) is measured from time to time – 

for each baseline – interpolated in time and 
applied to the source

● sometimes one uses more than one calib-
rator (left and right of the source)

● For high frequencies, there often are no 
strong calibrators closeby – phase transfer 
can then be employed 



Example: PdB amplitude calibration - 
3mm



PdB amplitude calibration - 1mm



PdB phase calibration - 3mm



PdB phase calibration - 1mm



Antenna based calibration

G ij t =g i t  g j
*
t g ij t 

● g
i 
and g

j 
are the antenna based gains, g

ij
 is 

the baseline dependent residual (closure 
error), which usually is in the 1% range

● this leads to the amplitude and phase equa-
tions

Aij t =ai t a j
*
t aij t 

ij t =i t − j t ij t 



Antenna based calibrations

● real and measued visibilities are then

● which can be solved when the closure error 
is small

V ij t =Aij e
iij

V ij t = Aij e
i ij

for a point like calibrator with flux density S
Aij=S andij=0

and
Aij=ai a j Aij S

ij=i− jij



Phase calibration

● For the phase, the equation depends on 
the differences of phases

● one antenna is used as reference antenna 
with φ

i
=0



Bandpass and Flux calibration

● Bandpass
● For spectral lines observations, one also has to 

calibrate the bandpass
● use line-free, strong source and do long integra-

tion
● flux calibration 

● use source of known flux
● tricky: planets are too big, they're resolved out
● quasars are time variable



Example bandpass PdB - 3mm



Bandpass PdB 1mm - LSB



Bandpass PdB 1mm - USB



Flux calibration PdB 3mm



Flux calibration PdB 1mm
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Imaging

Av l ,m I l ,m=∬V u , v e−2 i ulvmdudv

in reality, with incomplete sampling

I 
D
l ,m=∬V 'u , v S u , v e−2 i ulvmdudv

direct Fourier transform of all M points of the u ,v plane

I 
D l ,m=

1
M
∑k=1

M
V ' u , v e−2 i uk lv k m



Imaging

● and this on an  NxN raster (in the sky 
plane)

● this requires 4MN2 multiplications or, since 
M is of order N2, O(N4) multiplications

● since N is of order 1000 or so, and one has 
to multiply with the number of spectral 
channels, this is a lot of calculations

● Alternative: interpolating on rectangular grid 
(gridding) and using Fast Fourier Trans-
form, which is O(N2log

2
N)



Sampling

Sampling function

S u , v =∑k=1

M
u−uk , v−v k 

sampled visibility function

V S u , v =∑k=1

M
u−uk , v−vk V ' uk , v k 

Fourier transform of sampling function is thedirty beam
folding of true imagewithdirty beam gives dirty image



Weighted sampling

Weighted sampling function

W u , v =∑k=1

M
Rk T k Dku−uk , v−v k 

weighted sampled visibility function

V W u , v =∑k=1

M
RkT k Dku−uk , v−vk V ' uk , v k 



Weighting terms

● R
k
: weighting for quality of data

● system temperature
● integration time
● bandwidth

● T
k
: tapering function

● downweighting of outer points
● cleaner, but larger beam

● D
k
: density weighting

● takes into account clumping of data
● D

k
=1: natural weighting: better sensitivity

● D
k
=1/N

s
(k): uniform weighting: N

s
(k) is number of data 

points in region of width s: higher resolution



Gridding

● Folding with function C

V R
u , v =∑k=1

M
C uc−uk , vc−vk V

W
uk , v k 

whereC is a function which is identical tozero outside asmall region

V R
u , v =R C∗W =R C∗WV ' 

where R is a resampling function

R u , v =∑ j=−∞

∞

∑k=−∞

∞

 j−u /u , k−v / v 

whereu andv define the cell size



Resampling 

using theconvolution theorem

I D=V R=R∗C V W =R∗[C∗W V ' ]

R is its ownfourier transform

R l ,m=uv∑ j=−∞

∞

∑k=−∞

∞

 j−l /u , k−m/ v 



Resampling

● Resampling makes a periodic function out 
of I

D
, with period 1/Δu in l and 1/Δv in m

● introduces aliasing: sources outside the 
field of view are folded into the field of view 
(through sidelobes of the dirty beam)

● One has to do the gridding correction:

I c
D l , m=

I Dl ,m

C l ,m
for thedirty image

Bc
D l , m=

BDl ,m

C l ,m
for thedirty beam



Gridding functions

● Hat box (square)
● advantage: fast
● disadvantage: bad sidelobes, lots of aliasing

● exponential, Gaussian:
● suppression of aliasing

● Sinc (fourier transform of hat box, i.e. hat 
box in fourier plane)

● exponential times sinc



Gridding



Gridding



Visibility 
sampling



Image restauration

● Goal: “true” image of the sky
● Problems

● convolution with dirty beam
● missing spatial frequencies

● Restoration algorithms
● CLEAN type
● MEM type



CLEAN

● find amplitude and coordinates of maximum in 
dirty image (can be restricted to certain areas)

● subtract dirty beam from position of maximum, 
multiplied with amplitude times loop gain (< 1)

● repeat until residuum is below a certain amplitude 
limit or maximum number of components has 
been reached

● convolve all found components with clean beam 
(elliptical Gaussian fitted to center of dirty beam) 
and add them up

● add residuum of dirty map



MEM

● Uses model, convolves with dirty beam and 
minimizes

● to select the “simplest” model compatible 
with the data


2
=
∑r

∣V ur , v r− V ur , vr ∣
2

V ur , v r
2

while at the sametime minimizing the Entropy

H=−∑k
I k ln I k



Comparison

● CLEAN is well suited for small arrays, but 
deals badly with extended emission

● new developments: multiscale clean
● MEM is computing intensive, but can use 

models (e.g. from single dish maps) and 
does extended emission well

● hybrids do exist



UV fitting

● To avoid problems with gridding etc. one 
can also fit source models directly in the 
(u,v) plane

● works well, but only for simple geometries 
(Gaussians, disks, toroids)



Sensitivity

T A=
f T sys

 t

● Sensitivity of single dish telescope

● where f depends on the measurement 
method (e.g. f = 2 for position switching), 
also absorbs efficiency losses from clipping 
and A2D conversion in correlators



Sensitivity

● or, in flux density units

● for interferometers there are N telescopes 
and N(N-1)/2 baselines and correlations 
and each correlation increases the noise by 
a factor 2

 S=
f 2 k T sys

Ae t

 S=
f 2 k T sys

AeN N−1 t



Sensitivity

● Inserting numbers, one finds

 S=1.44
f T sys

AeN N−1 t v

T b=19.2
f 2T sys

Ae
2N N−1 t v

with  in mm ,  in arcsec  and   inkHz

Units for SareJy /beam  and for T b Kelvin



Sensitivities

● Sensitivities in flux depend only on antenna 
area, integration time and bandwidth

● Sensitivities in temperature depend on 
beam size, for very small beam size one 
has a very low brightness temperature 
sensitivity



Examples

● Two examples from Plateau de Bure
● NGC7027 

● planetary nebula at high declination
● good (u,v) coverage

● G10.47
● high-mass star forming region at low declination (-20°)
● bad (u,v) coverage



NGC7027
 optical



Good beam



Good image



Bad beam



Bad image



further examples: simulations



Bad (u,v) coverage



Image (including short spacings)



Residual



Better (u,v) coverage



Image (including short spacings)



Residual



Interferometers



ALMA


