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Chapter 3

Elementary radio emission processes
in the solar corona

The theory of elementary radiative processes plays a key role in determination of relations be-
tween observed data and local parameters in the source everywhere the electromagnetic radiation
is used for distant diagnostics of matter. In case of radiation of coronal plasmas on radio-wave
frequencies particularly three basic mechanisms are important:

o free-free thermal emission (bremsstrahlung),
e gyro-synchrotron radiation, and

e plasma emission — the process specific especially for the solar corona.

Since all these processes are closely related to properties of waves in plasmas, the elemental
theory of plasma wave modes is good starting point before discussing each emission mechanism
in particular.

A large amount of literature can be found on this topic — the comprehensive monograph by
Melrose (1980) is roughly followed through this chapter.

3.1 Waves in plasmas

It is well known fact that in plasmas (particularly in magnetised one) a couple of wave modes
can exist. This broad variety is due to a high complexity of the plasma response to electric or
magnetic field perturbations. The electric (E) and magnetic (B) fields in plasmas are described
by the system of Maxwell equations:

0B 1
rot E:_W div Ezgp
(3.1)
. 10E )
rot B:NOJ_{—C_QE div B=0

with j being the electric current density and p the charge density. These two quantities satisfy
the charge continuity equation

op .
et - 2
5 +div j =0, (3.2)

what implies directly from the set (3.1). For the purpose of formal theory of waves it is convenient
to express Maxwell equations in natural basis of harmonic functions. Thus Fourier transforming
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32 Chapter 3: ELEMENTARY RADIATIVE PROCESSES

the set (3.1) one obtains:

k xE=wB 3.3

k x B = —ifgj — — - B 3.4
C .

k-E=——"p (3.5)
€0

k-B= (3.6)

It is clear that the equation (3.6) is redundant since it follows directly from eq. (3.3), but
with one exception — in the case of w = 0, i.e. in the case of static fields, the reduction of the
system of equations does not apply. Thus, static fields have to be treated explicitly in further
considerations. This is closely related to the well known problem of the fourth Maxwell equa-
tion (div B = 0), which should be considered as the initial condition rather than independent
relation.

From the set of three remaining equations the final wave equation in the form

k x (k x E(k,w)) + C;)—22E(k,w) = —iwppj(k,w) (3.7

can be expressed, where equations (3.3) and
wp(k,w) =k - j(k,w),

which is just the Fourier transform of continuity equation (3.2), should be considered as defini-
tions of auxiliary quantities B and p in terms of basic quantities E and j, respectively.

The current density j consists of two parts:

1. the current caused by induced motion of particles in plasmas under influence of electro-
magnetic field j"¢

2. the extraneous current jé*!

In the first approximation the induced part of current is linearly related to electric filed according
to generalised Ohms law (in usual tensor notation):

j;:nd(ka w) = Uij(ka w) ' Ej (ka w) (38)

where 0;;(k,w) is the generalised conductivity tensor and usual Einsteins summation law was
applied. For the formal purposes it is much more convenient to use another tensor describing
the linear plasma response to electric field perturbation. The dielectric tensor ¢;;(k, w) is defined
as:

1
gij(k,w) = 8 + e oij(k,w) (3.9)

with d;; being the Kronecker delta (the unit tensor) and gy the vacuum permittivity constant.
Separating the current density into induced and extraneous parts and using Ohms law (3.8) and
dielectric tensor definition (3.9) the wave equation (3.7) is re-expressed in the form:

1.
Aij(k,w) - Ej(k,w) = —w—gojfm(k,w) (3.10)

where the dispersion tensor A;;j(k,w) is defined as

k2c% [ kik;
Aijk,w) = (% — 5ij> + €4 (k, w). (3.11)
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The equation (3.10) represents a set of three linear equations with components of the extraneous
sext

current density j¢**(k,w) as explicit source terms.

Except of this explicit source term there is also an implicit one hidden in the dielectric tensor.
The dielectric tensor can be separated into two parts — hermitian and anti-hermitian whose
describes different kinds of plasma response to electric field perturbation. While the hermitian
part of €;;(k, w) describes time-reversible component of response’, the anti-hermitian part causes
changes of the wave energy, either positive or negative, representing such a way the effective
source of waves. In case of energy decrease the damping of waves occurs, the energy increase
means amplification (or negative damping/absorption) of waves.

3.1.1 The general dispersion equation of linear waves

The question arises up what is behaviour of the electric field perturbation in source-free case.
Thus, one has to solve homogeneous form of the equation (3.10) with also implicit source term
omitted, i.e.

Ali(k,w) - Bj(k,w) =0, (3.12)

where A?j(k, w) is the hermitian part of the dispersion tensor. Solution of such a system of
equations exist only if the relation

Ak, w) = detAl;(k,w) =0 (3.13)

is fulfilled. The condition (3.13) represents the general dispersion equation for linear non-damped
waves in plasmas. To rewrite it to the usual form of the dispersion relation for a specific wave
mode one has to express the frequency w as a function of the wave vector k. This is not unique
operation in general however, and many branches

w™ = w™(k) (3.14)
can be obtained. Each branch w™ (k) represents one wave mode m.

Polarisation vectors Inserting relation (3.14) into the homogeneous equation (3.12) a solu-
tion for specific wave mode can be found. According to known rules of linear algebra the vector
that solves (3.12) has to be the eigen-vector corresponding to the zero eigen-value of the tensor

Ali(k) = A% (k,w™(k)) .

Such an eigen-vector is not determined uniquely since its complex amplitude is arbitrary. There-
fore it is convenient to choose an unimodular complex vector €™ (k) as a representative of all
solutions of the equation (3.12) for given wave mode. Such vector is called the polarisation vec-
tor and besides the dispersion relation (3.14) it is one of the basic characteristics of the specific
wave mode?.

Specific wave modes As an illustration of determination of particular wave mode and its
characteristics from the general dispersion equation (3.13) one may choose well known Langmuir,
transverse and ion-sound waves in plasmas without ambient magnetic field. The first thing has

!The corresponding part of conductivity tensor is anti-hermitian, and thus the time averaged power emitted
or absorbed by plasmas (E - j) is zero

%In case of two eigen-values are zeroed simultaneously one obtains two-dimensional space of solutions and the
concept of polarisation vector has to be replaced introducing polarisation tensor instead (see Melrose 1980)
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to be done is calculation of the dielectric tensor. The kinetic approach gives for unmagnetised
plasmas following result (according to Melrose 1980):

(w—k-v)dsj +ksv;  Ofa(P) .3
eij (I, _5zj+zeow2/ w—k-v+i0 vi Ops d°p, (3.15)

the sum is performed over each particle species o and small imaginary part in the denominator
indicates that correct integration path according to Landau prescription has to be used. For
isotropic medium the dielectric tensor can be separated into longitudinal(e!) and transversal (¢?)
parts as:

kik;
k2

and explicit calculation for Maxwellian distribution function gives:

8,‘j(k, w) = €l(k,w) .

etk w) (51-,- - ’“k'jf) (3.16)

el(kh,w) =1+ ﬁ [1 = 6(ya) + iv/Tya exp(—2)|
a Do

(3.17)
2
w -
e'(k,w) =1+ 3 B [1 - §lya) + iv/Tya exp(~42)|
[0
Here, wy, and Ap, are appropriate plasma frequencies and Debye lengths, respectively:
2 _Made o Vo (3.18)
pa — ma&o’ Da - U.}pa’ -

and the following abbreviations (V,, = kgT'/m,, designates thermal velocity of particles of species

«) were used:
w

V2kV,

Inserting the hermitian part of the dielectric tensor (i.e. retaining real parts of longitudinal and
transversal components only) in the form of (3.16) into the equation (3.12) the equation

d(y) = 2y exp(—y?) /Oy exp(t?)dt,  yo=

(Re {6l(k,w)}) . (n2 —Re {st(k,w)})2 =0 (3.19)

is obtained with the refractive index n defined as

els

n

The anti-hermitian part not considered for present purposes will be taken into account later in
the section 3.1.2, paragraph Absorption coeflicient.

Now, expanding the function ¢(y) into series for the high-frequency limit (y > 1) and retaining
only first few terms of electronic contribution to this function (the contribution of ions is reduced
by factor of m./m; relatively to that of electrons) the transversal part of the equation (3.19)
becomes

or using the refractive index definition written in more familiar form

wi(k) = wze + 2k2. (3.20)
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The just derived equation (3.20) represents the dispersion equation for transversal (electromag-
netic) mode.

The longitudinal part of eq. (3.19) gives two wave modes depending on the frequency limit used.
For w > kV,, i.e. y. > 1 the expansion of the function ¢ yields dispersion equation

w?(k) = wh, + 3K*V, (3.21)

which describes well known Langmuir waves.
On the other hand, expanding formulae for longitudinal part of the dielectric tensor in the limit

kV K w < KV,

the ion-sound mode with the dispersion equation

2.2
k*cs

2 _
) = T (3.22)

is found. Here, the ion-sound wave speed c; is defined by
Cs = Wpi * ADe-

3.1.2 Energetics in the waves

The electric perturbation in plasma waves induces also the perturbation of magnetic field and,
due to medium response, also variations of plasma velocity, stresses and pressure. All these
perturbations raise the total amount of energy contained in plasmas and the difference over the
equilibrium state can be ascribed to the waves. It is straightforward to compute the electric
or magnetic field energy in waves knowing the electric field amplitude. On the other hand,
mechanical energy connected with plasma motions and stresses is hard to be identified in general.
Nevertheless, the total amount of energy contained in particular wave mode can be, fortunately,
related to the electric field energy in this mode independently. Generally speaking, it is done
rewriting the dispersion equation

detA;; (k,w) =0 (3.23)

generalised to the case of weakly damped or growing waves (the anti-hermitian part of the
dielectric tensor is included now) into the form of the energy conservation law (for details see
Melrose 1980). The explicit calculations gives for the ratio R} between the total phase energy
density3w™ (k) and the phase energy density of the electric field w7 (k) in the mode m following
expression:

my — WE (k) 10 m -
R (k) = S = (;% [w?e (k,w)])w:wm(k), (3.24)

and the electric field (phase) energy density reads:

_ EmW)P (20

m
k
wE( ) 9 Vv

(3.25)

3Phase energy density is the energy of wave mode m contained in elemental volume of phase space — i.e. energy
per unit volume and unit cube of k-space
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Energy radiated by extraneous current The extraneous current on the R.H. side of the
expression (3.10) represents a source term in the wave equation. The wave energy U radiated (or
absorbed) by this source is given by the work of the extraneous current against the consistent
electric field of the wave, i.e.:

—+00
U= —/ / (. 1) - B(r, ) dr dt =
-0 JV
(3.26)

oo d’k dw
= - Re {j®(k,w) - B(k, w —
[ [Re{itow Bw} G55
where the Parcevals power theorem was used. Solution of the wave equation (3.10) can be
expressed as '
T, _ .
Eik,w) = _—Ailcl (k,w) 'jgwt(k’w)’ (3.27)
wWE
where the matrix A}, (k, w) is the inversion operator to the dispersion tensor (3.11) and according
to the tensor algebra rules it is written down using its co-factors (sub-determinants of transposed
matrix) A\ as:
Ak (k, w)
Ak,w)
Now, inserting the particular solution (3.27) into the formula (3.26), the wave energy generated
by the extraneous current density j**! can be computed. Contributions to integral over w are
zero with exceptions of the poles of function in integrand. Such residues have to be treated
carefully, and the integration has to be performed over the path in the complex plane according
to Landau prescription. Each residue is connected with one zero of A(k,w), and thus each pole
represents the energy radiated in one specific wave mode. Explicit calculation gives for energy
radiated by extraneous current in wave mode m the expression:
R (k) 2 d’k

A;]gl (k7 w) =

where the bar over the polarisation vector ™ (k) means complex conjugation as usual. Appar-
ently, the quantity

_ Rp(k) ‘_

W™ (k) (k) - 5 (ke w™ (1)) (3.28)

€0
that represents the wave energy generated by current density j*** (k,w™(k)) in the mode m per
unit cube of k-space, or its time derivative — the radiated power
_ du™(k)
o dt

will be more relevant ones for computation of radiation in particular emission processes, as
described in the following section (3.2).

p™ (k) (3.29)

Absorption coefficient The advantage of approach used above allows one to involve also
absorption of waves consistently. It can be easily done identifying the extraneous current with
the implicit source term caused by anti-hermitian part Egj(k, w) of the dielectric tensor, i.e.:
§E (k, w) = —igow e (k, w) Ej (k, w). (3.30)
Now, the absorption coefficient
1 dw™(k) 1 du™ (k)

V=R T @ Verl @ (3:31)
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is computed inserting the current density (3.30) into the relation (3.28). The final result is as
follows:

7" (k) = —2iw™ (k) RE (k)e]" (k)ef" (k)ef; (k, w™ (k). (3.32)

The absorption coefficient 4™ (k) may reach both positive and negative values depending on the
anti-hermitian part egj(k, w) of the dielectric tensor. Negative values then correspond to self-
generation of waves. If the anti-hermitian part 7} (k,w) is identified with that for Maxwellian
plasmas expressed by eq. (3.17) the absorption coefficient is positive and corresponding wave
energy decrease is known as Landau damping.

When some wave mode experiences absorption (either positive or negative) its frequency w™ (k)
becomes a complex quantity what reflects changes in wave amplitude. Thus, relation between
the imaginary part of frequency w™ (k) and the corresponding absorption coefficient defined by
eq. (3.31) should be found. Since the electric field amplitude in the wave evolves as E(k,t)
exp[—iw(k)t] and w(k) < E?(k) these two quantities are related simply as

7™ (k) = —2Im{w™(k)} (3.33)

3.2 Specific emission mechanisms

Now, when the general theory of propagation and generation of the waves in plasmas has been
reviewed, the extraneous current density and its Fourier transform has to be identified for each
specific emission mechanism to calculate the energy or power radiated according to the formula
(3.28).

3.2.1 Bremsstrahlung and gyro-synchrotron radiation

It is well known fact from the theory of electromagnetic field that whenever the charged particle
changes the vector of its velocity the electromagnetic radiation is emitted. There are two natural
kinds of such an accelerated particle motion in plasmas implying two basic emission mechanisms:

1. non-rectilinear motion of electron in the electric field of ion during electron-ion encounters
in thermal plasmas — resulting radiation is called bremsstrahlung or free-free emission,

2. spiralling motion of particles (especially electrons) in the magnetic field imposed to plasmas
— gyro-radiation or synchrotron radiation is the proper assignation for this radiative process
in dependence on the spiralling particle energy (medium or relativistic).

Both emission processes will be now discussed further.

3.2.1.1 Bremsstrahlung

The relevant quantity that is to be found is the power P(w) radiated in the electromagnetic
mode in unit volume of plasmas per unit frequency interval. To compute this quantity one may
to start with determining the energy radiated by single electron during one encounter with single
ion, then calculate the power radiated by the electron during multiple (continuous) encounters
with ions taking into account the encounter frequency, and finally sum over the electron distri-
bution function.

The energy radiated during single encounter can be found from the equation (3.28) identifying
the extraneous current density with that of one moving electron. If the trajectory of the electron

r =r(t)
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is determined, the current density connected with this moving (point) charge can be expressed
as

j(r,t) = —ev(t)d (r — r(t))

and its Fourier transform is

+0o0
ik, w) = —e / v(#) exp [—i (k - £(t) — wit)] dt. (3.34)

—0o0
Here, v(t) = 1(¢) is the electron instantaneous velocity and ¢(x) is the Dirac delta function. For
the electromagnetic mode with the refractive index

nw)=—2>1
@==>
in isotropic thermal plasmas (see eq. 3.20) and the non-relativistic particle (v(t) < ¢) the
variation of the term k-r(¢) is negligible comparing to the second expression wt in the exponent.
Thus, the space-dependent term contribute only by constant factor of complex unity (which can
be omitted) to the Fourier transform of the extraneous current. This approximation corresponds
to omitting the internal retardation inside the source in classical electromagnetic field theory
(dipole approximation). Retaining the time-dependent term only in the exponent one can find
for the extraneous current caused by single particle the following expression:

. e

ik, w) = —ev(w) = ——a(w), (3.35)
with a(w) being the time Fourier transform of the particle acceleration. The total energy radiated
by the accelerated charge in the electromagnetic (Transversal) mode

T 7., A%k
v = [ 09 Gy

can be re-expressed using the relations

w=—-,  d°k = k?dk dQ (3.36)
n(w)

and averaging over the solid angle 2 as the sum of contributions with frequency w:

oo 1 22
0 u (w) v 47T€() 371'(33

/0 ™ n(w) [a(w)]? dw, (3.37)

where formula (3.28) for energy radiated calculation with the extraneous current density (3.35)
was used. For radio radiation only the distant encounters with large impact parameter b are
important as the characteristic frequency radiated is about f = v/b. For such encounters the
trajectory r(t) of the moving electron is only slightly departed from rectilinear motion and for
the time Fourier transform of the acceleration a(t) in the electric field of ion

_i Zie I'(t)
me 4meg |r(t)|?

a(t) =

with the electron trajectory approximated by relation r(t) = b + vt one can write

- exp(iwt) dt. (3.38)

Z;e? t© b+ vt
a(w) = /

e Ameg J oo (b2+v2t2)%
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Here, b is the vector connecting the ion and the closest point on the electron straight-line path
(its length is the impact parameter b), Z; is the (fully ionised) ion proton number and v is
the electron velocity (constant in present approximation). Computing the integral (3.38) and
inserting the result into the equation (3.37) the electromagnetic energy radiated by electron
during single encounter into the unit interval of frequency is expressed as:

1 STL((/.))Z~2€6(U2 [ (bw) (bw)]
T 7 2 2
ill U.)' b _ K K -

( ’ ) 4m =N) 37 C3m2U4 ! v 0 v ’ (3 39)

with K, (z) being the MacDonald function of index v (modified Bessel function of the second
kind).

The emission of electromagnetic waves is rather continuous as electron experiences multiple
encounters with many ions simultaneously. The power radiated by the single electron will be
thus relevant quantity. To compute it, one has to estimate the number of collisions per unit
time. Considering various impact parameters the radiated power reads:

o0

szjngle(w; U) = 27"”1'”/ u’(w; b) b db. (340)

S
bmin

The integration has to start with the value b,;, > 0 as for smaller impact parameters the
present approach is not valid due to violation of straight-line approximation and/or due to need
of quantum mechanic treatment of the problem.

The last step in finding the power PT (w) radiated by bremsstrahlung from the unit volume into
unit interval of frequency consists in summing all contributions (3.40) to emitted power by single
electrons with velocity v over the electron velocity distribution. Thus,

Plw) = [ Phgelwso)f (v)d*v (3.41)

where for the electron distribution function f(v) the normalisation

Ne = / f(v)d3v
was used. According to Melrose 1980 the explicit computation for the Maxwellian distribution
in CGS units finally gives

PT(w)

_ 16n(w)Zfe nine <2> ! G(T,,w) (3.42)

w) Ve

4

3 c3m?2 T

3

where the Gaunt factor
G Te, w ~ AC

approximately equals to the Coulomb logarithm in the classical approximation used here.

3.2.1.2 Gyro-synchrotron radiation

As already mentioned above, the gyromagnetic emission (called synchrotron radiation in case
of relativistic electrons) is caused by particles spiralling in the imposed magnetic field. The
presence of the field brokes the isotropy of the medium and thus the power radiated into the
electromagnetic mode by unit volume into the unit frequency interval and unit solid angle,
so called emissivity n’ (w,#), will be the relevant quantity describing efficiency of the gyro-
synchrotron radiation.

To estimate it, firstly the extraneous current density corresponding to particle (only electrons
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will be considered further) spiralling motion has to be identified. Then, using the essential re-
lation (3.28) and the definition (3.29) the power p’ (k) radiated in electromagnetic mode into
the unit volume of k-space by single electron can be computed. Finally, using expression (3.36)
for element of k-space in spherical coordinates the emissivity 5’ (w,8) due to single electron is
computed. Moreover, for highly-relativistic particles several simplifications are allowed in the
single-electron emissivity formula and in case of well-chosen, but still realistic, distribution func-
tions the sum over particle velocity distribution can be made analytically. Thus, the expression
for emissivity from the unit volume of plasmas due to synchrotron radiation is found.

The first step requires the knowledge of the particle trajectory r(¢) that has to be inserted into
the relation (3.34) to find the current density caused by single electron. When the coordinate
axes are chosen appropriately (see Melrose 1980) the spiral orbit of the electron in the magnetic
field B is described by radius-vector with the following components:

r(t) = (R sin(Qt), R cos(2t), ’U”t)

with definitions of the gyro-frequency 2 and the Larmor radius R

eB R’U_J_

0=
yme’ 0

used; -y is the Lorentz factor. The goniometric function in the exponent of expression (3.34) is to
be expanded into series with the Bessel functions J;(z) as the Fourier coefficients. Consequently,
the Fourier image of the extraneous current density is

jk,w) = —2me Z V(s,p,k)d(w — sQ —kjv))

where V (s, p, k) expressed in components reads

S . ’
V(Sapak) = (UJ_ ; JS(Z),’L’UJ_ JS(Z),’U” Js(z)) (343)
the relativistic relation for electron momentum

P ="7mevV
was used and the argument of Bessel functions is

kivi kipy
z=k R = = .
+ Q eB
Inserting this current density into the formula (3.28) and differencing with respect to time the
power radiated by single electron into the element of k-space in the polarisation given by the

vector e (k) is evaluated as:

ACEDY 25_: 2R (1) [T (k) - V (s, p,k)|* 3w — 52 — ko). (3.44)

Now, using the element of k-space (3.36) expressed in the spherical coordinates the emissivity
due to single electron is

2,2 2
T _enf(w,0)w” 9 T e 2
Tringte,0) = =35 g (wn(,0) Bg(w,0)[T(0) - V(s,0,0) x  (3.45)

X0

w(l —n(w, 9)% cos acos ) — SQ]
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with « being the electron pitch angle (tana = p, /p||) and where 0 describes wave-vector incli-
nation with respect to the magnetic field:

P k-B
cosf = ——.
k|B]

Synchrotron radiation It is rather difficult to sum the single-electron emissivity (3.45) over
the electron velocity distribution to find emissivity per unit volume. However, in case of relativis-
tic energies of radiating particles several approximations can be done. For isotropic power-law
in energy distribution function

f(E)=K-E™

what is very common case in synchrotron radiation sources, one may for emissivity tensor write
(in CGS, see Melrose 1980):

K(meCZ)l—a 0 . ( 2w )l—a,
W\/ge Qsm9 sz(a) 3Q Sin9 . (346)

ik (wa 0) =

Here, the components of matrix H(a) are as follows:

a—1
272 3a+7 3a—1
Hy = r T
U7 3@+ 1) ( 12 ) ( 12 )

1
—icot @ 2 T2 2 3 8 3 4
Hiy = —Hy = 1CO ( w ) 22_ a—+ F(cH— )F<a+ )

wle

3 3Q2sinf a 12 12
a—3
(3a +5)272 <3a+7> (3&—1)
= r 'i——
Ho = 501) 12 12 )’

a is the power-law spectral index, K the normalisation factor and I'(z) Euler gamma function.
Using tensor generalisation of emissivity one is able to describe power radiated in arbitrary
polarisation state of synchrotron radiation.

3.3 Plasma emission process

Standard radiative mechanisms — the bremsstrahlung and gyro/synchrotron radiation described
above are of use also for solar corona radio emission, particularly for quiet sun radiation and
slowly-variable component. Nevertheless, solar radio bursts that often consists of intense narrow-
band fine structures hardly could be explained only in terms of these processes, since they have
by their nature broad-band emission spectrum. Moreover, there is quantitative disagreement in
values of radio flux predicted by formulae e.g. (3.42) or (3.46) using reasonable parameters of
coronal plasmas and those observed during the bursts.

On the other hand, very hot and sparse coronal plasmas may, due to lack of collisions, easily
be in the state of thermodynamic non-equilibrium with non-Maxwellian distribution function,
particularly during solar transient events (e.g. flares or CMEs). Under such circumstances the
anti-hermitian part £f;(k,w) of the dielectric tensor (3.15) — or its counterpart for magnetised
plasmas — can result to negative values of the absorption coefficient (3.32) in some range of wave-
vectors for the specific wave mode m. One than says, that distribution function is unstable with
respect to generation of wave mode m within some range of k-space. The negative absorption
is also often called stimulated or induced emission.
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Such self-generation of waves in unstable plasmas, similar to light amplification in lasers as will
be seen further, represents the basis of so called plasma emission mechanism. Since there are
many types of distribution functions unstable to large amount of wave modes the term “plasma
emission” should be regarded as generic name for all radiative processes based primarily on the
negative absorption of particular wave modes.

Unfortunately, for the electromagnetic mode which only can escape from the coronal plasmas
and reach Earth radiotelescopes the absorption coefficient (3.32) is always positive with one ex-
ception of so called electron-cyclotron maser radiation — see paragraph Absorption coefficient
in the section 3.3.1.1. Thus, some mechanism of conversion between unstable plasma modes and
the electromagnetic one is required. Such mechanism is available due to non-linear coupling
among variations of plasma parameters (e.g. electric and magnetic field, electron density etc.)
in different wave modes.

To sum up, plasma emission mechanism is generic name for class of radiative processes working
usually in the following two stages:

1. the wave mode m unstable in some range of k-space is generated due to deviation of
distribution function from equilibrium Maxwellian distribution.

2. this mode m is converted via non-linear coupling into the electromagnetic one that escapes
solar corona and can be detected on Earth.

Since the region of unstable waves in k-space is usually limited to small extent and also the
wave mode conversion is strongly resonant process as will be seen later, resulting radio emission
is narrowband and possibly with fine structures as usually observed during solar radio bursts.

Due to mentioned similarity with radiation amplification in lasers it is convenient to adopt
principle of detailed balance between emission and absorption processes used in radiative transfer
elementary physics and quantitatively expressed using the Einstein coefficients. The theory built
on these axioms will be in usual quantum notation briefly reviewed now.

3.3.1 Weak turbulence theory

Stimulated emission and other induced processes such as wave-particle or wave-wave scattering
can be under some assumptions described consistently within the weak turbulence theory. It is
based on semi-classical formalism — the particles in states with momentum p are described by
distribution function f(p) while the waves in mode m with wave-vector k is described by the
occupation number N™ (k) (number of quanta of wave mode m in state with momentum hk)
defined as:

w™ (k)

N ) = £ om g

(3.47)
Such description brings not only the advantage of uniform treatment of various induced processes
from the wave generation point of view, but also it enables consistent estimation of back-reaction
of particles to wave radiation or absorption since the principle of energetic balance is imposed
on microscopic level here. On the other hand, approach (3.47) to wave distribution disables
correct description of coherent processes since the phase information about mode depicted by
occupation number is lost. Thus, the assumption that phases of waves are unimportant — so
called random phase approrimation — plays key role in the weak turbulence theory. Coherent
processes will be discussed in the next section 3.3.2, however such general theory as in case of
incoherent emission has not been available yet.
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One may start with subset of this general description applied to stimulated emission of waves
due to unstable particle distribution function and its back-reaction to wave generation — so called
quasi-linear theory.

3.3.1.1 Quasi-linear theory

Transferring wave generation and/or absorption processes onto microscopic level one has to use,
according to quantum physics, probabilistic description of each elementary emission/absorption
action. This is usually done introducing the Einstein coefficients.

Einstein coefficients Consider two states described by particle momenta p and p~. Let the
total number of particles in state p is N, and N,- for the state p~, respectively. According
to quantum theory the transition of one particle between states p and p~ is accompanied by
emission or absorption of quantum of waves with frequency given by condition

hw = |E(p) — E(p™)|. (3.48)

Here, E(p~) and E(p) are particle energies in the states p~ and p, respectively. In case of free
particles the energy of the state p reads in non-relativistic limit

p?
E(p)=— 3.49
(o) = 2 (349
with m being the particle mass, components of state vector p are simply Cartesian components
of particle momentum. On the other hand, in magnetised plasmas the classical treatment is not
sufficient and relativistic quantum theory gives for the eigen energies the following expression
(spin of particle is ignored here, see Melrose 1980):

E(p) = \/mgc‘l + 2n|q| Bhc? +pﬁc2. (3.50)

Due to periodical motion in perpendicular direction the momentum p has the perpendicular
component discrete — determined by the integer number n. Parallel component is continuous
and corresponds to projection of momentum to the magnetic field direction, i.e.:

p=(pL,p) = (V 2n hQ m,p||) (3.51)

where (2 is the gyrofrequency already introduced in the section 3.2.1.2.

Now suppose that E(p~) < E(p) (see Fig. 3.1) and consider probabilities (transition rates)
WIT_’Z(’S(k), w*P(k) and Wg’f"d(k) of transitions between the states p and p~ due to absorption,
spontaneous and induced emission of quantum of mode m with wave-vector k (referred as (m, k)
quantum further) per unit time, respectively. The rates w;n_’gbs(k), w;';;fp (k) and w:;;fnd(k)
represents Einstein coefficients for transitions p = p~. The total rate of transitions p~ — p
due to absorption is

o de(k) — wm,abs

dt PP

while total rate of transitions p — p~ as consequence of spontaneous or induced emission reads

dN™(k :
% =W (k) N, + Wil (k) N, N™ (k). (3.53)

(k)N,- N™ (k) (3.52)

pp~

The relations between the Einstein coefficients can be obtained in the state of thermodynamic
equilibrium but it should be noted, that resulting relations are valid regardless of macroscopic
state of plasma-waves system as they are fundamental characteristics of the p = p~ transitions.
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Fig. 3.1: Absorption and emission processes due to p* <> p and p <> p~ state transitions.

In the state of thermodynamic equilibrium adopted principle of detailed balance applies implying
that rate of change of occupation number N™ (k) of (m, k) quanta due to absorption and emission
processes during p = p~ transitions together is zero. Thus combining equations (3.52) and
(3.53) one obtain

dN™(k) ind b

@ W;Z’fp(k)Np + w;f;f" (k)N,N™(k) — W;"_’Z s(k)pr N™(k) = 0. (3.54)
In the state of thermodynamic equilibrium the distribution of wave quanta is given by Planck
law

1

Ao (k)
exp (—7‘3B§1 ))
Inserting the Planck law into the eq. (3.54) and taking into account that (3.54) has to apply for
arbitrarily high temperature T the relation among three Einsteins coefficients is found* :

,ab _ ; _ Jind _
W (k) = w P (k) = w (k) = win_ (k). (3.55)

N™(k) =

Quasi-linear equations Using the relations (3.55) the rate the (m,k) quanta are emitted at
in the general (non-equilibrium) state due to all transitions that can be taken into account is
(see eq. 3.54):
N™(k
dT() =Y wp (k) [N, + N™(k)(N, — N,-)]. (3.56)
pp~
However, the actual number of possible transitions is much less than it seems from eq. (3.56)

since the quantum condition

p—p =hk
selects only allowed ones. In particular, the transition rate w;’;)_ (k) can be expressed as:
W (k) = w™(p,k) - 6(p — p~ — Fik). (3.57)

Now, one would like to change from discrete notation used hitherto to the continuous one. Thus,
the number of particles IV, in the state p should be replaced by distribution function f(p) and

4The relation somewhat differs from that used in classical radiative transfer physics because the occupation
number N (k) is used here instead of spectral energy density or specific intensity I™ (w,8, ¢) (8, ¢ are spherical
coordinates) used in radiative transfer
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double sum in the equation (3.56) by integration over p and p~. Using the expression (3.57) for
the transition rate w(p, p~, k) , which is now re-interpreted as probability of quantum emission
per unit cube of k-space, the integration over p~ is performed trivially due to d-function. The
expression f(p — hk) appeared in the result can be for hk < p expanded in Taylor series

of(p) & f(p)
Op; Op apj

f(p + Bk) = f(p) + hk; +3 th kj +.
When only the terms that are meaningful in classical limit & — oo (see the paragraph Transition
rates calculation) are retained, the first quasi-linear equation describing wave generation (or

absorption) in plasmas described by distribution function f(p) is finally found:
dN m(
/w (p,k ( (p) + N™(k)hk - aj(;(p )) d®p (3.58)

As was already mentioned, the advantage of this semi-classical approach consist besides other
in possibility of homogeneous description of back-reaction of particle distribution to wave emis-
sion/absorption processes. On the microscopic level, each emission or absorption of quantum of
waves is connected with transition of particle between two states. Consequently, the time change
of number N, of particles in state p is given by the difference between net rate the quanta (m, k)
are emitted at due to transition (p™ = p + iik) — p and net rate the quanta (m,k) are emitted
at due to transition p — (p~ = p — hk), i.e. (see Fig. 3.1):

Zwm N+ + N™(k)(Ny+ — zwpp ) [Ny + N™ (k) (N, — N,-)].

(3.59)
Transferring from the discrete notation to the continuous one again and using the Taylor expan-
sion of the transition rate w™(p™*, k) = w™(p+#k, k) the second quasi-linear equation describing
back-reaction of particles distribution to the wave emission/absorption processes reads

d/(p) :/hk-% [wm(p,k) (f(p)+Nm( ) ik - 81(;;)” (‘2121)‘3. (3.60)

In the magnetised case p has to be interpreted in agreement with equations (3.50) and (3.51)
and the wave-vector k consequently has components:

o= (ke by = (S (3.61)

with s being integer number. Using these relations, the quasi-linear equations (3.58) and (3.60)
can be rewritten for the case of plasmas with ambient magnetic field — the explicit calculation
could be found in Melrose 1980.

Transition rates calculation To make equations (3.58) and (3.60) meaningful for practical
computation one has to calculate the emission rate w™(p,k) . It can be done when one re-
interprets the power radiated p™ (k) considered in the section 3.1.2 as continuous process to be
— according to quantum physics ideas — the series of quanta emissions with emission probability
per unit time w(p, k), i.e.:

p(k) = h™ (k) w™(p, k)

Thus, using relations (3.28) and (3.29) the emission rate can be expressed as:

m(p,k) = % (hwnll(k) R%sk) ‘e_m(k) .jext(k, wm(k))‘Q) (3.62)

w
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In the force-free collision-less plasmas particle moves on rectilinear trajectory. Consequently, the
extraneous current density in the equation (3.62) is to be identified with that given by equation
(3.34) with rectilinear trajectory

r(t) =ro+ vt
inserted. Explicit calculation gives
2’ R (k) — 2
m k_ = 7E m k_ . (5 m k. - k * .
W (.40 = S @0 v (w710 ~ke-v) (3.6

For the magnetised case with spiral trajectories the result can be obtained directly generalising
the relation (3.44) for power radiated by single electron into transversal waves to expression
valid for arbitrary mode and particle. An explicit calculation gives:

o0
w"(p,k) = > w™(s,p k)
S§=—00
where w™ (s, p, k) is abbreviation for
2r*Rip(k) 2
m _ E . m _ _
w(&gm_mm&““wm)vggm|a@(m sQ — kyoy ) (3.64)

with Q being the gyrofrequency and the quantity V (s, p,k) defined by relation (3.43) in the
section 3.2.1.2.

Absorption coefficient As was already mentioned, the first quasi-linear equation (3.58) ex-
presses the emission or absorption of wave quanta due to medium described by distribution
function. The rate of occupation number change can be separated to two parts — one indepen-
dent of the occupation number itself

[de(k)

W = [wro, 10 1(p) a'p

and one linearly proportional to it

m ind
[~ ymagnmag
where 4™ (k) reads
M) = — [ wm 9f(P)
Y7 (k) = / w"(p,K) k- “2 P dp. (3.65)

As the superscripts over each part indicate the former part describes spontaneous or thermal
wave emission whereas the latter belongs to induced processes. The quantity v™ (k) is absorp-
tion coefficient by definition and its sign depend on what process prevails — whether absorption
or stimulated emission of waves. In case of negative values also the term growth rate is often used.

It is clear from expression (3.65) that in case of positive slope of distribution function f(p) in the
direction of wave-vector k the absorption coefficient 7™ (k) can reach negative values implying
so self-amplification or instability of waves. The positive slope corresponds to inequality

Nptnk > Np

in the formula (3.56), which is only discrete form of the first quasi-linear equation (3.58), and thus
inverse population of energetic levels is required (in unmagnetised plasmas) for self-amplification
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to work. This feature of the theory of induced processes in plasmas makes it very close to, now
already classical, physics of lasers as was already mentioned in the introduction to this section.
Probably the most known examples of amplification of waves due to such inverse population of
energetic levels in the field of plasma physics are the “Bump-in-Tail” or “Two-stream” instabil-
ities of Langmuir waves. The positive slope of the particle distribution function is reached by
energetic particle stream propagating through the thermal background plasmas in this case.

In magnetised case, the momentum p and the wave vector k has to be interpreted according to
expressions (3.51) and (3.61) and, consequently, the formula (3.65 for the absorption coefficient
™ (k) rewritten for use in magnetised plasmas reads:

70 == 3 [ Wk b

§=—00

s 0 0 3
(Eapﬁ iy %) /(p) dp (3.66)

with emission rate per s-harmonic w™(s, p, k) given by the relation (3.64).

The particular importance of the formula (3.66) consist in possibility of direct amplification of
electromagnetic mode in process known as cyclotron maser. The cyclotron maser works if: 1)
conditions for negative absorption are fulfilled in some range of wave-vectors and, 2) generated
electromagnetic mode can escape the solar corona. It can be shown, that the absorption coeffi-
cient (3.66) with emission rate (3.64) allows such situation under some conditions. It is unlike
the unmagnetised case, where components of k-vector is to be interpreted simply as Carte-
sian components of the wave vector. Then, the resonant condition contained implicitly due to
d-function in the relation (3.63) can be fulfilled only if

V>0 3.67
v (

where v, = w(k)/k is the wave phase velocity. Since refractive index for electromagnetic waves
nT (k) < 1 for all k-vectors, negative absorption of this mode is forbidden in the case of unmag-
netised plasmas as a consequence of apparent inequality

v<c

Hence, the mode conversion between waves that can satisfy the condition (3.67), and their am-
plification is therefore possible, and the electromagnetic ones is required for plasma emission
process to work. Some mechanisms of the mode conversion will be discussed in sections 3.3.1.2
and 3.3.2.2.

Let us finish discussion of the absorption coefficient with legitimate question of relation between
the coefficient (3.65) calculated within the quasi-linear theory and that determined classically
in the section 3.1.2 by formula (3.32). The answer is, that both quantities are identical provided
that for computation of the anti-hermitian part of dielectric tensor in the expression (3.32) the
relation valid for collision-less plasmas given by equation (3.15) is used. Thus, for collision-less
damping of waves the two approaches are equivalent.

3.3.1.2 Other induced processes

The indubitable advantage of the weak turbulence theory is its microscopic level approach to
particles-waves system. This approach allows one to treat homogeneously not only processes
where single particle and single wave quantum take part, as described by quasi-linear theory
reviewed briefly in the previous section 3.3.1.1, but also multiple quanta-particle or quanta-
quanta interactions as well. Among many such processes the two ones are of great importance,
particularly for the second stage of plasma emission:
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1. the induced scattering of waves on particles

2. the three-wave interactions

as both of them represents an efficient way of mode conversion.

Induced scattering When some wave mode propagates through plasmas the induced motion
of particles (i.e. induced current) connected with this mode becomes the source of waves. In the
continuum approximation for homogeneous plasmas the same wave mode with the same wave
vector and frequency is reproduced only, just in agreement with the Huygens principle, and con-
tributions to different waves mutually cancel out. Nevertheless, this is not exactly true when the
discrete character of matter is taken into account. The sum of radiation from each single particle
contains besides the initial wave field also component with different wave-vector/frequency or
even of different mode. This component of wave field is referred as scattered wave further.

Such scattering of waves by particles is well known from classical electromagnetic field the-
ory and as an illustrative example the Thomson scattering of light on free electrons in the solar
corona can be adduced. Nevertheless, this process may have besides its spontaneous version also
amplified form. It applies if the absorption coefficient (3.65) of the wave given by the envelope
caused by interference between initial and scattered modes is negative. Then this envelope wave
is amplified and thus the rate of the scattering process is proportional to initial and scattered
wave occupation numbers, as expected for an induced process.

Both, spontaneous and induced contributions to the scattering can be described by set of kinetic
equations whose derivation in the scope of the semi-classical formalism used is very similar to that
of the quasi-linear equations (3.58) and (3.60) — see Melrose 1980 for details. For scattering
of the (m, k) waves into the (m',k’) ones (the process is usually schematicaly designated as
m +— m' in literature) the following relations are found:

%t(k) = / W (p, k, k') (3.68)
! ! 31!
* (f (P)IN™ (K) = N™ (k)] + N™ (K)N™ (k) h(k — K') - —af;(pp)) &p (2733
and
d]vzit(k,) — /Wmm’ (p,k, k’) % (3.69)
3
g (f (B)IN™ (k') = N™ (k)] + N™ () N™ (k) il — k') - —m;p)) &p (;17:;3.

The first equation describes the rate of change of the occupation number of the initial wave
(m, k), similarly the second determines creation/annihilation of the scattered (m’,k’) quanta.
As a consequence of scattering process the particle distribution also varies. The corresponding
equation as well as the explicit expression for the scattering rate w™™ (p, k, k') can be found in
Melrose 1980.

Three-wave interactions Another possibility of the mode conversion is given by non-linear
wave-wave interactions. The physical basis of this process for simplest case of coalescence of
two waves into the third is as follows: The each wave modes are independent only in the linear
approximation. Nevertheless, in reality the wave propagating in plasmas where another wave
is present does not see homogeneous medium but that modified by the former wave, and vice
versa. As a consequence, the non-linear contribution to current appears and becomes the source
of the third wave.
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The process just considered above can be also described within the semi-classical formalism of
the weak-turbulence theory provided the phases of each quanta are uncorrelated. This is always
true in the case of broad-band distributions of waves since the coherence time for the wave mode

m can be estimated as
1

e Awm(k)
where Aw™(k) is the characteristic width of the mode m distribution. The coherent version
of this processes is described by strong-turbulence theory based on the Zakharov equations and
briefly reviewed in the section 3.3.2.2.

For the coalescence process of two quanta (m’,k’) and (m”,k”) into the third (m,k) (and
simultaneously running decay of the final quanta (m,k) into the initial ones — schematically
/N

m' +m" = m) the following set of equations can be found in the weak-turbulence approach (see
Melrose 1980):

AN™ (k)
at

x (N™ ()N™ (k") = N™ (k) N™ (') = N™ (k) N™" (k"))

= / um ! (kK K x (3.70)

d3kl d3kll
(2m)® (2m)?

for the coalesced wave occupation number rate of change and

%It(k') —_ / wm (kK k") x (3.71)
< (N GONT @) NN (1)~ NN ) K
and
% — / u™m ™ (k, k' k') x (3.72)
Pk Pk

x (N™ (& )N™ (k") = N™(K)N™ (K') = N™ (k) N™ (k"))

for the initial wave quanta rates. The specific conversion rate® gmm'm” (k, k', k") can be deter-
mined expanding the current density j"¢(k,w) induced in plasmas into series of powers of the
electric field E(k,w) and the resulting expression is to be found in Melrose 1980. Note only,
that as the consequence of momentum and energy conservation on microscopic level

Rk + hk" =hk  hw™ (K') + w™ (k") = hw™(K)

. 1o . . .. . .
the specific coalescence rate u™™ ™ (k,k’, k") contains delta-functions in its expression, in par-
ticular

™™ (kK K)o O(k — k' — K) x 8[w™ (k) — w™ (K') — 0™ (K")],

what indicates that three-wave interactions are strongly resonant processes.

5The probability that quantum from the unit cube of k-space around the wave-vector k' coalesce per unit time
with the quantum from the unit cube of k-space around the wave-vector k” to result in the quantum from the
unit cube of k-space around the wave-vector k
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3.3.2 Coherent processes

The weak-turbulence theory just reviewed in the previous section is capable to describe homo-
geneously many types of particle-wave or wave-wave interactions, provided that wave field is
sufficiently described by occupation numbers — i.e. that wave phases are unimportant. As was
shown, such condition is fulfilled in case of broad-band wave distributions as after the coherence
time 7. the phases of waves are completely mixed. Nevertheless, sometimes the region of unsta-
ble waves in the k-space is so narrow, that before the phase mixing state is reached the waves
have grown up substantially.

For such cases the weak-turbulence theory is inapplicable and its departure from the reality can
be separated into two kinds of problems:

e the theory predicts qualitatively some process (e.g. instability) to be running, but further
quantitative analysis gives wrong results — usually predicted growth rates of unstable waves
are lower than in reality.

e the weak-turbulence version of coherent process does not exist at all.

Hence, processes where also wave phases are important have to be treated another way. Un-
fortunately, the general theory of coherent processes — as a counterpart of the weak-turbulence
theory — has not been established yet. Two particular cases will be discussed in the following.

3.3.2.1 Two-stream instability

The two-stream (sometimes also, and more pertinently, designated as bump-in-tail) instability
represents an example of such kind of process whose coherent as well as weak-turbulence (just
quasi-linear in this case) versions exist. Usually this term is used for the situation, when ther-
mal Maxwellian distribution (the main stream) is perturbed by low-density beam of energetic
particles giving raise to unstable Langmuir waves.

Generally, the specific dispersion relation for Langmuir waves propagating through such per-
turbed plasmas can be found including the beam-contributed part of dielectric tensor into the
general dispersion equation (3.23). For unmagnetised plasmas the separation (3.16) of the di-
electric tensor into the longitudinal and transversal parts applies. The Maxwellian beam of

electrons
ny l (v — U(,)Z]
exp

VN AT PN

contributes to the longitudinal component by value (according to Melrose 1980):

A (icw) = (oo ) 11 () + ivrmexp(-12)), (3.73)

where ny is the beam electron density, U, and AV, the mean beam velocity and the beam
velocity spread, respectively; the beam plasma frequency is defined as

nye?
Wpp =
P Meeo’

_ w—k-Uy
V2EAV,

the y; is the abbreviation for

Y
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and the function ¢(y) was introduced in the eq. (3.17). The equation (3.19) generalised for
case of damped/growing waves thus gives for longitudinal (electrostatic) waves in presence of
the electron beam relation

eh(k,w) + Ae'(k,w) =0 (3.74)

where €} (k,w) is the background plasma contribution to the longitudinal part of the dielectric
tensor given by the relation (3.17). The presence of the low-density electron beam may be
regarded as a perturbation and hence the specific dispersion relation for Langmuir waves w =
w!(k) only slightly differs from that obtained in the unperturbed case w{ (k) and given by
relation (3.21), i.e.

wh(k) = wl (k) + Aw” (k).

In the first order approximation the equation (3.74) can be rewritten into the form:

866 (k,w)

Aw’ (k) "

+ Adl(k,w) =0

w=wk (k)

from which the frequency difference Aw’ (k) can be further expressed using the relation (3.24)
as
Awl (k) = —wl (k) RE (k) Ael (k, w). (3.75)

Now, when wave growth/damping is included, the function ¢(y) contained in the dielectric
tensor perturbation (3.73) needs to be regarded as a function of complex variable y,. This
fact brings some difficulty with expansion of the function ¢(y) into series, as this expansion is
not unambiguous for physically relevant case |yp| > 1 and depends on ratio between real and
imaginary part of frequency w. In fact, only two limiting cases can be treated analytically using
expansion of the function ¢(y); both of them will be now briefly discussed.

1. Im[y]>>1 As a consequence of the y, definition this limit implies the condition
Im{w} > kAV}. (3.76)

Since the bandwidth of waves unstable due to presence of the beam can be estimated by the
parameter kAV,, the condition (3.76) means that wave growth rate is much greater then wave
distribution bandwidth. In such a case the wave phases are not mixed during one growth period
and become important for the process of instability. The expansion of the function ¢(y) gives
for this limit the following expression:

2

b
Ael(k,w) ~ —m

Inserting it into the equation (3.75) together with approximations wf (k) =~ w, and RE(k) ~ 1

the cubic equation for the frequency difference Aw’ (k) is obtained

1 Wyl
Awl (k) = = 7 P 5
2 (Awl(k) + wp, — k- Uy)

whose solution (one of three) reads

1/3
Awl (k) = (—) (@ +8) wp (3.77)
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with real constant o and S of order of unity (detailed result can be found in Melrose 1980).
Hence, the growth rate of the coherent version of the two-stream instability can be estimated as

o\ 1/3
0~ (") w

n

and it applies in the low-velocity-spread limit
1/3
(@> wp > kAV,.
n

2. Re[y]> 1 In this limit the expansion of ¢(y) in the first order approximation gives:

w;b N z'wf)b
(wik) —k-Uy)?2  (FAV,

Ae'(k,w) ~ - VT U exp(—yj)- (3.78)

Since imaginary part is small now due to the exponential factor exp(—y2) one could expect
randomisation of wave phases in times less then one growth period and, thus applicability of
the weak-turbulence theory. And really, inserting the expansion (3.78) into the relation (3.75)
and using obvious simplifications w{ (k) & wy, RE(k) ~ 1 the imaginary part of Awl'(k) can be
expressed as

2

_ Wpwy o (k- Up —wp)?
Im{Aw’(k)} = _(\/ﬁkApV;)P\/?_T (k- Up — wp) exp( —(\/ikAV},)pQ )

This result can be directly compared with that obtained from quasi-linear theory using say
equation (3.65). Both results are found to be identical when relation (3.33) is used.

Finally, let us note that terminology on this topic has not been unified yet and various terms
designating the coherent and incoherent (quasi-linear) version of the two-stream (bump-in-tail)
instability are used in the literature. The coherent instability is also frequently termed as
reactive or, particularly in Russian literature, of fluid type, while for its quasi-linear version the
designations resistive or of kinetic type are used as well.

3.3.2.2 Strong wave turbulence

Strong wave turbulence is generic term for non-linear wave-wave interactions that can not be
sufficiently described within the weak-turbulence theory just due to great importance of wave
phases for processes involved. The first description of coherent wave-wave interactions is that
by Zakharov (1972) who treated the non-linear interaction between Langmuir and ion-sound
waves. His approach was roughly as follows:

Firstly, let us consider linear Langmuir and ion-sound waves in homogeneous plasmas. The time
evolution of plasma parameters variations in these waves can be derived most simply within the
plasma two-fluid theory or alternatively they can be guessed Fourier transforming the dispersion
relations (3.21) and (3.22) for relevant waves into the coordinate space. Hence, the electric field
variation in Langmuir waves is governed by equation

o8
ot2

and similarly the electron density variation n in the ion-sound waves fulfils (for wavelengths
A < Ape) relation

—3V2AE+ w2, E =0 (3.79)

9%n
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Now suppose that both wave modes propagate through plasma simultaneously. Due to ion-sound
wave the electron density is now distributed non-uniformly and as a consequence of the plasma
frequency definition (3.18) the last term wf)eE in the eq. (3.79) depends explicitly on time and
space. Hence, the equation (3.79) can be rewritten in the form
0’E 9 n(r,1)

2 2 _
W — 3‘/6 AE + wpeE = —(.dpe

where the plasma frequency wye is now re-interpreted as that connected with the background
average density ng. Equation (3.81) describes Langmuir wave electric field evolution under the
influence of ion-sound density perturbation. The effect of density distribution can be estimated
qualitatively even without solving it by analogy with the Schrédinger wave equation describing
an electron inside the crystal lattice (c.f. equation 3.84). Identifying the total density ng+n with
crystal single-electron potential one finds, that the Langmuir electric field tends to concentrate
itself in the density holes, similarly as electron probability density in the crystal is high in places
of low potential (in the vicinity of ions locations).

E 3.81
- (3:81)

On the other hand, non-homogeneous (averaged over wavelength) electric field influences density
distribution due to non-linear ponderomotive force Fy; whose volume density is (e.g. Chen
1984): ,
2
fNL == —w—p; gradw.
w 2

where ( ) denotes the fast-time (on scales of several plasma period) averaging. As a consequence,
a source term has to appear on the R.H. side of equation (3.80), i.e.

2
?373 — A = miz div fyr. (3.83)
Since changes of electric field amplitude and ion-sound density variations are slow in comparison
with plasma frequency it is convenient to separate the instantaneous Langmuir electric field
time evolution into the fast (on plasma frequency) variations and the slowly varying complex
amplitude

(3.82)

E(r,t) = % [€(r,) - exp(—iwpet) + E(x, 1) - exp(Hiwpet)

Using this separation and relation (3.82) for ponderomotive force, further omitting the second
derivative of slowly changing complex amplitude £(r,t) the equations (3.81) and (3.83) can be
rewritten in the form (see e.g. Zakharov 1972, Robinson 1997):

0 3V2 n

=4l AE= — .84
rm + 20 € = wpe 2n0€ (3.84)
82'”/ 2 8() 2

The relations (3.84, 3.85) are known as set of Zakharov equations and describe coherent non-
linear interactions of Langmuir and ion-sound waves.

Since Zakharov early work (Zakharov 1972) further generalisations of theses equations were
made. The most natural one is including the electromagnetic terms into the eq. (3.81) — see e.g.
Zakharov et al. 1985. The second Zakharov equation (3.85) was modified as well since in
its original fluid-theory formulation was not applicable in some (particularly short-wavelength)
limit — this drawback was solved using kinetic approach. Both generalised equations are explic-
itly written down (see equations 5.1) and used extensively further in the Chapter 5.

Let us now turn to particular non-linear wave processes described by equations (3.84, 3.85) — or
their generalised version (5.1) — and known also as parametric instabilities.
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Three-wave interactions Among three wave interactions belong coalescence of two waves
into the third or decay of one pump wave into two daughter modes. Generally both these
processes can be schematically written as

m' +m" = m
where symbols m, m' and m” may be one of L, S or T for Langmuir, ion-Sound or Transversal
(electromagnetic) modes if the generalised Zakharov equations (5.1) are used. The processes de-
scribed here represent coherent — and therefore more efficient — version of three-wave interactions
discussed in the section 3.3.1.2. In that section also the physical mechanism of the coalescence
process was described. Explanation of parametric decay can be seen more clearly just in its
coherent variant:

Let us suppose plane Langmuir wave (for instance) propagating through plasmas where also
plane ion-sound wayve is present. The density pattern formed by the ion-sound wave represents —
according to the first Zakharov equation — a system of semi-reflecting mirrors for the Langmuir
wave. Hence, very similarly to the Bragg reflections of X-rays in crystalline materials — but,
with the Doppler shift (and/or mode change) given by motion of density pattern — the Langmuir
wave is partly reflected. On the other hand, the total electric field given by the sum of both
incident and reflected waves causes by means of ponderomotive force (3.82) amplification of the
ion-sound wave. This amplification further leads to more efficient reflections of parent Langmuir
wave and thus the positive feedback is established. The instability grow until non-linear effects
of higher order will take place.

For use in solar coherent radio emission theory particularly following processes are most often
considered:
L—-L'+S L'+S—T

or
L—-T+S

for radiation on the frequency ~ wy, and
L'+L—-T

for the second harmonic (= 2wp,) emission.

Modulational instabilities Unlike the three-wave processes discussed above the modula-
tional instability has no weak-turbulence counterpart since coherence of waves is essential in
this process. There are four waves taking part in the instability and physical mechanism is as
follows:

Suppose plane Langmuir wave again propagating, for simplicity, in direction parallel to that
of weak plane ion-sound wave. Due to the first Zakharov equation the Langmuir electric field
tends to concentrate near density minima of ion-sound wave. Hence, the electric field of parent
Langmuir wave becomes slightly modulated:

EL(z) = Eycos(kz) - (1 + mcos(Kz))

where k£ and K are Langmuir and ion-sound wave wave-numbers, respectively and m is small
parameter of order m ~ n/ng describing modulational effect of density pattern onto Langmuir
wave. The essence of the instability consist in the simple mathematical relation

cos(kx) cos(Kzx) = % (cos[(k + K)z] + cos[(k — K)z])
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indicating that side-band Langmuir waves with wave-numbers k£ + K and k — K are excited as
well. As in the previous case, the ponderomotive force given by the total electric field by all
three Langmuir waves causes increase of density variations what on the other hand makes the
modulation deeper. Finally let us note, that in case of non-parallel mutual propagation of parent
Langmuir wave and ion-sound density variation the growing side-band(s) may be radiated in
the electromagnetic mode (hybrid instability) giving such also an effective way of plasma wave
conversion into the radio radiation.

Both three-wave and four-wave interactions with respect to possible applications to solar flares
radio radiation are further studied in the Chapter 5, section 5.1.



