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Outline

> Introduction (to introduction)

» Radio emission mechanisms

» Antennas, antenna arrays & detectors

> Non-ideal effects in radio measurements

» Methods of radio astronomy

» Radio spectroscopy

» Radio imaging

» Combined approach: Frequency-agile arrays — Multi-frequency aperture synthesis
> Current and future major radio instruments (ALMA & co)

> Practical session I: Preparing ALMA observation proposal with ALMA OT

> Practical session Il: Calibration, visualisation & analysis of ALMA data with CASA

All lectures to be found at: http://wave.asu.cas.cz/barta/lectures/radioastronomy
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http://wave.asu.cas.cz/barta/lectures/radioastronomy

QOutline — Lectures 1 and 2

> Introduction (to introduction)

o Brief history
o Subject of radio astronomy
o Basic terms, quantities, and concepts

» Radio emission mechanisms

Brehmsstrahlung

Gyro-synchrotron emission

Atomic and molecular lines

Coherent radiation: plasma emission and masers
General/unified theory of (classical) plasma radiation

o O O O O
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Introduction

Introduction to radio astronomy, MFF UK Praha




Brief history

Karl Guthe Jansky 1931

EoqlBa
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Brief history

Grote Reber 1937
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Brief history

Beginnings of radioastronomy in Czechoslovakia / Czech Republic

1952: solar radiometer at
metric wavelengths
(J. Budéjicky)

1957: Meteoric radar
(25kW / 37,5MHz / |
500Hz / 10ps;

Z. Plavcova, ). Simek)

1967: radiospectrograph
50 - 210 MHz

1972: radiospectrograph
70 — 820 MHz
~ (A. Tlamicha)
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Subject of radio astronomy By wavelength range
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Subject of radio astronomy

By wavelength range
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Subject of radio astronomy By reception/detection of signal

by
Tg = B . S!'Ir [
\¢ B
‘ Voltage |
v, cos 2mv(t —7) | | Multiplier v, cos 2mvt
* What we receive by antennas | J\
* What we measure by ‘voltmeter’ | Integrator : correlator
L1 — 1

Vi ¥ €08 2nv g
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Subject of radio astronomy

ALMA Science Objectives

1. Cosmology and the high redshift universe

2. Galaxies and galactic nuclei

3. ISM, star formation and astrochemistry

4. Circumstellar disks, exoplanets and the solar system

5. Stellar evolution and the Sun

The invisible Universe

Sky over VLA @ 1.6GHz
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Subject of radio astronomy

17 GHz Multi-Frequency
SuUn

" 8 Wide-Field Radio Image of the
1.45 GHz - -~ Galactic Center
AL=90cm

(Kassim, LaRosa, Lazio, & Hyman 1999)
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Subject of radio astronomy
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w World » This Is the first photo of a black hole International Edition

SPACE © SCIENCE

This Is the firstqohoto of a black hole

I\ By Ashley Strickland, CNN
; @ Updated 1640 GMT (0040 HKT) April 10, 2019

News & buzz

This is the first ever photo of a black hole
Il © o003/ 125 o SN




Basic quantities & concepts
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Basic quantities
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Basic quantities
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Basic quantities
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-20f

Radio-telescope resolution /

Wﬁ’vv UV" \ antenna pattern (see Lecture 3)
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Basic quantities

Examples

The Sun as a non-resolved source The Sun as a resolved source

PM at ALMA (Band 3):

D=12m, A~-3mm -
Qpeam~1 arcmin
Qsource"'SO arcmin

RTS5 at ASU Ondrejov:

D=10m, A~0.2m -
Qbeam~1.5 deg
Qsource~0.5 deg

ALMA Jy-per-K database

Introductio




Basic quantities

S I
: 100% Q [ 100% U
§ = Sl = Q Q ¥ +U y
S.z U + 45°
83 V X ' X
S[l =1 Q’D?U[;}ﬂ:hﬂ Q=0:U{:}u;v=u
S1 = Ipcos 2y cos 2y al U
Sy = Ipsin 21 cos 2y ) N )
S3 = Ipsin 2y
Q=0;U=0;¥=0 Q=0,U=<0,V¥=0
(b) (d)
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Basic concepts

Radiative transfer

ds T

[()=1,e" +[ e Tedr’

Tb = Toe't + Teff (1- e't).

Th = Teff, t, >> 1 (optically thick regime)
Tp = To(1-t) + Tesit. t, << 1 (optically thin regime)
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Basic concepts — = j, — a1,

Radiative transfer

non-absorbing/non-emitting
medium
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Emission mechanisms
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Emission mechanisms

Types of emission mechanism

« Atomic transitions

« Molecular transitions

« Free particle emission
o Cerenkov emission
o Bremsstrahlung (Coulomb collisions)
o Magneto-bremsstrahlung (gyroemission)
o Transition radiation

» Coherent free-particle emission (wave-particle interactions)
o Plasma emission
o Electron-cyclotron emission

« Wave emission (wave-wave interactions)

Introduction to radio astronomy, MFF UK Praha



Emission mechanisms

= Brehmsstrahlung (free-free emission)
[ ]
e\i\‘
.. hfsEfE, ¥ L ®
e o \
e . -
__— lons
o )
. _ .
e radiation
l”é pattern
]
®e .
.

- . —

1/2 ' .
) / Z2nen;T—12e /KT g, (T, v)[ergs~tem—3Hz 1]

- 327e® ( 2
V"™ 3me3 \3km

— n,, n, electron and ion density
— Z electronic charge
- gff(T, I/) velocity averaged Gaunt factor

gff ~ 1 for hl//kT e gl
1 <gsp <5 for 1074 < hw/kT < 1
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Emission mechanisms

Brehmsstrahlung (free-free emission)
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Figure 5.3 Numerical values of the gaunt factor 8y(v, T). Here the )'i'equeucy
variable is u=4.8 X10"v/T and the temperature variable is v:=1.58
10°Z? / T. (Taken from Karzas, W. and Latter, R. 1961, Astrophys. J. Suppl., 6,
167.)
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Emission mechanisms

Magnetic lines of force
t t Tttt Gyro-sychrotron radiation
——].
— -_ i ] \\\“
L Gy mchroiro
K“‘“L_L_,,#- el
|~
R, | Non relativistic case: g .
Spiralling ;_m Lorentz Force equation RelgWvistE gase:

F=-e (vxB)
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Emission mechanisms

gEmizred Power vs. Time for Gyroresonance Emws:on; Gyro-sychrotron radiation
. i
@ 10ﬂ' ]
i ] Retarded potential solution:
- B Intra-source retardation time
- ] |
B - |
B Fourier Transform of Power 7] |
I (Power vs. frequency) I ;
N 7 m
L - Jn (ﬂi‘] - i/ Ei’(nr—:n sin(r)) dr
) 21 J
0.2 .
ool | ! A ]
s s=1 5=2 5=J Frequenecy
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Emission mechanisms

Gyro-sychrotron radiation

« Gyration frequency eB
Vi i oer——
g 2Tyme

*  When y ~ 1 : cyclotron emission

* When y>1 : synchrotron emission

— Radiation is beamed in the velocity direction and within in a cone of with half-
angle 1/y

— The width of the pulse is given by the time taken by the cone to sweep across
the line of sight, which is for the highly relativistic case:

2Ty g sino
— Ensemble of pulses is quasi continuous and peaks at critical frequency v,

ve = 3eBsina (B V2 — 161 (2.) (1) MHz

3 .
— With energy emitted per unit time: P(E, 1/) — V3e BQ‘%naF ( 4 )

with E: energy electron mc V—(’
And the function F defined as F(a:) =T f;o K5/3(€)d£

K5/3 (E) the modified Bessel function of order 5/3
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Emission mechanisms

Gyro-sychrotron radiation

Radio synchrotron spectrum from an ensemble of electrons

Power emitted by the electrons as a function of the frequency of the emitted
radiation is given by: P(I/) — fgf P(E, L/)n(E)dE

Power law distribution for the number density of electrons as a function of
energy can be produced in a variety of ways, including acceleration through
shocks

n(E)dE = CEPdE

General result Plv) ~v™ % a= 1%1

In the case of extended, transparent radio sources the observed range of
spectral indices 0.5<a <1,leadsto2<p < 3.
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Emission mechanisms

Gyro-sychrotron radiation

a0 - Single elecron spectrum
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Figure 26.5 The power-law spectrum of synchrotren radiation, shown as
the sum of the radiation produced bv individual electrons as thev spi-
ral around magnetic field lines. The spectrum of a singie electron s
at the upper nght. The turnover ar low freguencies due to svnchrotron
self-absorption is not shown, -
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Emission mechanisms
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Emission mechanisms

Hydroxyl and formaldehyde lines seen in emission
and absorption from a molecular cloud

0.2 |y @aylard/HartRAO OH 161 2MHz

OH 1665MHz
OH 1667MHz
OH 1720MHz
HGHC 4B28MHz

Intensity (K)

0 10 20
Radial Velocity (km/s})

Arp 220 galaxy

Molecular lines

Astrophysical molecular masers

1000
800 |

600 |

I (mJy)

1636 1638
Frequency (MHz)
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Emission mechanisms

nmux = nsph‘tz 100
[ I]IIII\I \III\\I T \\\I\\II T L L ]
L — free-bound emission ] 1
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g
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Formation of the 21-cm Line of Neutral Hydrogen

L e
Higher energy state: Proton and ¥
electron spins aigned 51'12515[;!2 of
photon Lower energy state: Proton and

electron have coposite spins.

Recombination lines

Hydrogen n>50

Hydrogen 21cm line

Introduction to radio astronomy, MFF UK Praha



Coherent radiation: Plasma-emission process
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Unstable distribution functions e.g., bi-Maxwellian

bump-on-tail, loss-cone,...

3e-05 . . | . . 3e-06 . . . .
f(v) + 1 f(v) ¢t :
2e-05 — 2e-06 .
1e-05 - — 1e-06 .
U L | L | 1 | I 0 /\
-4e+07 -2e+07 0 2e+07  4e+07 -4e+07 -2e+07 0 2e+07  4e+07
Vv \'
I .
Inverted populations of energetic levels:
- Analogy with lasers
sy E
B N E
; |o""':. ::,I;l'-- e, i L a‘-‘l.ﬂ. ‘;
:;;' e St ':' °°°° ' gme IR "
™ 5% = :rEEEq;; E _.Ml"' "1,
- Eﬁ EEE% 1 Anisotrophe Distributicn Drifting Maxwelian Lags—Cone Distribution
o I u::P ‘ 2x0” I 3:|d" I o I 1la"“ l z:n“ l hluo'“ ' o I n:?" z.:m"’ I !:Iud" J
Wy cm/sec
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Wave-particle interactions

m

w™(k

N™ [k) = [ } Number of ‘photons’ of plasma wave mode m in unit k-space
fiw™ (K)

NB: Relation to specific intensity
+
P
)
AVAVAVAVE o
ho (k)
) * p
PR s
ho (k)
V i
P

djan[kj m,s T™,imn m m,abs m
— = WP (K) N, + win (k) N, N7 (k) = wite™ (k) N, - N (k) = 0

Induced processes — proportional to N(k)

3e-05
f(v)

2e-05

1e-05

0 L !
-4e+07 -2e+07 0 2e+07

Quasilinear theory

P
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Wave-particle interactions

Quasilinear theory

m(k .
dN { ] — wm,._sp{k]Np + Wm’md{k]Nme{k] _ wm,abs {k]Np—Nm{k]/

At PP pp~ PP
in TD equilibrium
1 . m,abs M, _myind _ .an
= exp (Tmm;k!)_ + IimT - o ) w2, (k)= WPP_P{k]I =w - (k) =w (k)

v
\ Transition probabilities — an
analogy to Einstein coefficients

p—p = hk ) 2 W;;;-(k)zwm(P:k)'é(P—P_—hk)-

% = 3 e () [Ny + N () (N — N,)]

bp.p
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Wave-particle interactions

Quasilinear theory

dN"(k) -
T = 2 Vi (&) [Ny + N (k) (N = Np-)]
Pap
from discrete to cont. representation
daf(p) 2, , #f(p)
+ hk) = + hki——— + = h ik
f(p = hk) = f(p) o T3 I Opidp,
Quasi-linear equations
dN™(k) af (p) The wave-field (expressed as
dr /Wm(P! k) (f(l’) + N™(k)nk - Jp ) d’p number of quanta) dynamics...
df(p) _ d [ m m of(p) d®k | ... and back-reaction of the plasma
dt fﬁk' ap [w (P, k) ('f{p) + N7 (k) Rk op )] (2w)3)  distribution function.
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Wave-particle interactions

Quasilinear theory

Power radiated by particle to the plasma wave mode m in unit k-space

— see below Formal theory of waves in plasmas for detailed calculation

p™(k))= hw™(k) w™(p, k)

Transition probability — an

I / analogy to Einstein coefficients

w01 = 3 (7o T o) - )|

dN™(k)
dt

- f w"(p, k) (f(p) + N™(k)Tik - BJ;LP}) ap

|

de[k} ind o -
i RO S
df (p)
k) =-— "(p, k -
)= = [ ok k- 2
T Positive: Landau-like wave-mode damping
Absorption coefficient Negative: An instability
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Emission mechanisms

Coherent plasma-radiation processes

ad

| ap|

) f(p) d°p

Plasma radiation: Wave-mode transformation processes

L—-L'+8 L'+8-T

LT+ 8
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Plasma emission
Cyclotron masers

Quasilinear theory

Direct instability/maser action:
Electron cyclotron maser

ES-wave generation followed by the
2" stage of plasma-emission process




Emission mechanisms

Plasma radiation: Wave-mode transformation processes

AN™ (k)
di

x (N (k)N (") — N7 () N () — N7 (k) N (K))

_ f o (ke k' k)

dak.- dak.r.r
(2m)? (2m)°

for the coalesced wave occupation number rate of change and

AN (1)
dit

x (N ()N (") = N™ (1) N™ (k') = N™ (I N™ (k"))

__ f am ! (K k) x

dak dak.r.r
(2m)? (2m)°

and

" "
dNﬂ;ﬂ(k ) _ _fumm’m"(k] k"]k'”) w

d*k 4%k’

(N 0N () = N RN () = NN K)o s
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Emission mechanisms

Plasma radiation: Wave-mode transformation processes in strong-turbulence regime — Zakharov egs.

I*E 2 2 2 n(r,t)
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Emission mechanisms

Plasma radiation: Wave-mode transformation processes in strong-turbulence regime — Zakharov eqs

- .
IE _svpE s+ W B = /2””5} N
8 2 \\ T /

2
1%-1- SV AE = if,'
8£ Ewpe ’.I"I.n

Effect of refractive index: Electric field
tends to accumulate in plasma density

depletions

o

92n c - Effect of ponderomotive force: Gradients
- cjAn < /n 45-|5|2 | < of (averaged) electric field push the
/ plasmas out

<{:—}L’+§’> L'+ 85T

Parametric decay
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Emission mechanisms

Ponderomotive force — wave pressure

vanarmizer | FF. Chen: Introduction to physics of plasmas

Ponderomotorickd sila

Tato rovnice je ptesna, jestlize E a B znamena hodnotu téchto poli v mistg,
kde se pravé elektron nachazi. Nelinearita vstupuje do rovnice jednak
¢lenem v x B, ktery je druhého Fadu, nebot jak v, tak i B pfi rovnovaze
vymizi.takZe tento Clen nemiize byt vét§i nez v, x B, kde v, a B, jsou
hodnoty z linearni teorie. Druha ¢&ast nelinearity, jak uvidime, vstupuje
skrze E v misté skuteéné (nikoliv pocatecni) polohy ¢astice. Vezméme elek-
trické pole viny ve tvaru

E = E (r)cos wt, 18-31]

kde Ep(r) v sobé zahrnuje prostorovou zavislost. V prvém pfiblizeni miZzeme
v rov. [8-30] zanedbat &len v x B a vzit E v pocatecni poloze r,

mdv,/dt = —eE(rg), [8-32)
v, = —(e/mw)E, sin wt = dr(dt, 18-33]
or, = (efmw?)E coswt. 8-34)

Je dulezité si uvddomit, Ze pfi nelineédrnim vypo&tu nemGZeme napsat e*
a potom pouzit realnou ¢ast vysledku, ale musime napsat realnou &ast
explicitng: cos wt. V nelinearni teorii se totiz vyskytuji soudiny oscilujicich
faktori a operace nasobeni neni s operaci oddéleni realné &asti komuta-
tivni. (Souin realnych &asti neni totoZny s realnou &asti soudinu.)
Piejdéme k pfiblizeni druhého Fadu a rozvifime E(r) v fadu v blizkosti
bodu r, .
E(r) = E(ry) + (6r, . V)E|,_, + ... 8-35)
Musime nyni ptidist &len v, x B, kde B, je dano Maxwellovou rovnici
V x E = —dB/dt,
B

L= —(1/w)V x E|,_, sinor. [8-36]
Ta &ast rovnice [8-30], ktera je vyjadfena ¢leny druhého fadu, je potom

mdv,/dt = —e[(dr, . V)E + v, x B]. I8-37]
Dosazenim vyrazii [8-33], [8—341 a [8-36] do [8-37] a vystfedovanim pies
cas dostavame

d e?
o < !,z,> = M, VE, + By x (VX E)] = fu. W

Pfitom jsme uzili vztah {sin?wt> = {cos? wt) = 3. Dvojity vektorovy
soudin lze zapsat jako soudet dvou ¢&lend, z nichz jeden se zrusi s ¢lenem
(E, . V) E,. Zistava potom

2

.

fr S ; VE2. |8-39)
4 mw*

l'o je efektivni nelinedrni sila pisobici na jeden elektron. Sila pusobici na

prostorovou jednotku je f, krat elektronovi hustota n, kterou muzeme
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vyjadtit pomoci w?2. Jezto E} = 2{E?*), dostavame kone¢né pro pondero-
motorickou silu vyraz
w? 6, EY

= e v B-40
FNL ;&_ 2 ! |

Jedna-li se o vinu elektromagnetickou, pfevazuje v rov. [8-38] druhy
¢len a fyzikalni mechanismus sily Fy je nasledujici: elektrony osciluji
ve sméru E, ale magnetické pole vlny stagi jejich orbity. Lorentzova sila
—ev x B tladi elektrony ve sméru k (v ma stejny smér jako E a soucin
E x B lezi ve sméru k). Faze vektorii v a B jsou takové, ze vysledkem stfe-
dovani pfes jednu oscilaéni periodu neni nula, nybrz’ — méfeno delsim
casovym Osekem — vznika drift ve sméru k. Ma-li vina konstantni ampli-
tudu, neni pro udrzeni tohoto driftu uz tfeba zadné dalsi sily; jestlize se
ale amplituda viny méni, nahromadi se elektrony v oblastech s malou ampli-
tudou a na piekonani prostorového naboje je potieba sila. Proto je efektivni
sila F,, imérna gradientu {E>). Pon&vadZ driftovy pohyb je pro viechny
elektrony tentyZ, je Fy, umérné hustoté — odtud faktor w?2/w? v rov. [§-40].

Jedna-li se o vlnu elektrostatickou, pfevazuje v rov. [8-38] prvy cion
a fyzikalni mechanismus sily Fy je prosté takovy, ze elektron oscilujici
ve sméru k || E dobghne dale béhem pil cyklu, kdy se pohybuje z oblasti
silného pole do oblasti slabého pole, nez pii obraceném pohybu, takze
vyslednym pohybem je drift.

I kdy# F, pusobi pfedeviim na elektrony, je tato sila posléze pfena-
gena na ionty, ponévadZ se jedna o efekt, ktery ma nizkofrekvenéni nebo
stejnosmérny charakter. Vytvofi-li se piisobenim Fy, shluk elektrond, vznik-
ne touto separaci naboji pole E,. Celkova sila, jiz je elektron vystaven, je

F = —eE_+Fy. 18-41]

e
Protoze ponderomotoricka sila pasobici na ionty je mendi o faktor
Q2|2 = m{M, je sila piisobici na iontovou tekutinu pfiblizng
F = ¢E,,. I8-42|
Sedteme obé posledni rovnice a zjiStujeme, Ze sila pisobici na plazma je Fy, .
Pfimym diisledkem sily Fy, je samofokusace laserového paprsku v plaz-
matu. Z obr. 8-12 je patrno, 7e svazek laserovych paprskii o kone¢ném pri-
méru vyvola v plazmatu ponderomotorickou silu v radialnim sméru. Tato

V <E2>
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Samofokusace lnserového svazku je zpisobenn ponderomotorickou silou,

OBR, 812



Emission mechanisms

Plasma radiation: Wave-mode transformation processes in strong-turbulence regime — Zakharov egs.
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Emission mechanisms

Other ,peculiar mechanisms:

Cerenkov radiation
Transition/jitter radiation
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Formal (kinetic) theory of plasma radiation:
A unified approach to all classical emission mechanism
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Slides in this section: See Barta (2002) for details and references

Plasma wave generation, emission and absorp-
tion processes

The theory of elementary radiative processes plays a key role in determination of
relations between observed data and local parameters in the source everywhere the
electromagnetic radiation is used for distant diagnostics of astrophysical plasmas. In

case of radiation of coronal plasmas on radio-wave frequencies particularly three basic
rmechanisms are important:

e free-free thermal emission {bremsstrahlung),
e pgyro-synchrotron radiation, and
e plasma emission — the process specific especially for the solar corona.

Since all these processes are closely related to properties of waves in plasmas, the
elemental theory of plasma wave modes is good starting point before discussing each
emission mechanism in particular.


http://wave.asu.cas.cz/barta/lectures/plasma_astrophysics/literatura/knihy-skripta-clanky/Barta_waves.pdf

A large amount of literature can be found on this topic — the comprehensive
monograph by Melrose {[Melrose 1980]) is roughly followed through this chapter.

1 Waves in plasmas

[t iz well known fact that in plasmas {particularly in magnetized one) a couple of
wave modes can exist. This broad variety is due to a high complexity of the plasma
response to electric or magnetic field perturbations. The electric (E) and magnetic
(B) fields in plasmas are described by the system of Maxwell equations:

0B 1

rot E= —E div E = E—Dﬁ
- (1)
- l "
rot B:,LLDJJFEE div B=20



with j being the electric current density and p the charge density. These two quantities
satisfy the charge continuity equation

Op .. .
a—b—dlﬂfJ—D, (2)

what implies directly from the set {1). For the purpose of formal theory of waves it
is convenient to express Maxwell equations in natural basis of harmonic functions.

Thus Fourier transforming the set {1) one obtains:
k xE=wB (3)
kx B =—iugj— = F (4)

c
k-E=——p (5)
£0

k-B=020. (6)
[t is clear that the equation (6) is redundant since it follows directly from eq. (3),
but with one exception — in the case of w = 0, Le. in the case of static fields, the

reduction of the system of equations does not apply. Thus, static fields have to be
treated explicitly in further considerations. This is closely related to the well known

3



problem of the fourth Maxwell equation {div B = 0), which should be considered as
the initial condition rather than independent relation.

From the set of three remaining equations the final wave equation in the form
e
k x (k x E(k,w)) + 5 E(k, w) = —iwpj(k, w) (7

C

can be expressed, where equations {3) and
wﬁ?(ka Lu‘) =k- J(ku w)u

which is just the Fourier transform of continuity equation {2), should be considered
as definitions of auxiliary quantities B and p in terms of basic quantities E and j,
respectively.

The current density j consists of two parts:

1. the current caused by induced motion of particles in plasmas under influence of

electromagnetic field j™



2. the extraneous current j**

In the first approximation the induced part of current is linearly related to electric
filed according to generalised Ohms law {in usual tensor notation):

jjnd(kﬂ w) — Jij(kﬂ w) | Ej(kﬂ w) (8)

where oy;(k, w) is the generalised conductivity tensor and usual Einsteing summa-
tion law was applied. For the formal purposes it 13 much more convenient to use
another tensor describing the linear plasma response to electric field perturbation.
The dielectric tensor e;4(k,w) is defined as:
1
Eij(k, {.dj = 5” + —- Jij(kj L:J) (9)
Wen
with &;; being the Kronecker delta {the unit tensor) and £q the vacuum permittivity
constant. Separating the current density into induced and extraneous parts and using
Ohms law (8) and dielectric tensor definition {9) the wave equation {7) is re-expressed
in the form: ‘
[

— ;" (k, w) (10)

ﬂij(kj L:J) . Ej(k,{u‘) = _QJED

o



where the dispersion tensor A;;(k, w) is defined as

;{5262 (kzkj

Ak, w) = E 51';;) + g4k, w). (11)

L

The equation {10) represents a set of three linear equations with components of the
extraneous current density j**(k, w) as explicit source terms.

Except of this explicit source term there is alzo an implicit one hidden in the
dielectric tensor. The dielectric tensor can be separated into two parts — hermitian
and anti-hermitian whose describes different kinds of plasma. response to electric field
perturbation. While the hermitian part of £;;(k, w) describes time-reversible compo-
nent of response!, the anti-hermitian part causes changes of the wave energy, either
positive or negative, representing such a way the eflective source of waves. In case of
energy decrease the damping of waves occurs, the energy increase means amplification
(or negative damping/absorption) of waves.

'The corresponding part of conductivity tensor is anti-hermitian, and thus the time averaged power emitted or
absorbed by plasmas (E - j) is zero



1.1 The general dispersion equation of linear waves

The question arises up what is behaviour of the electric field perturbation in source-
free case. Thus, one has to solve homogeneous form of the equation {10) with also
implicit source term omitted, i.e.

ALk, w) - Ei(k,w) =0, (12)

where Afj[kjw) is the hermitian part of the dispersion tensor. Solution of such a
system of equations exist only if the relation

Ak, w) = detAl(k,w) =0 (13)

ig fulfilled. The condition {13) represents the general dispersion equation for linear
non-damped waves in plasmas. To rewrite it to the usual form of the dispersion
relation for a specific wave mode one has to express the frequency w as a function
of the wave vector k. This is not unique operation in general however, and many

branches
w™ = w™k) (14)

can be obtained. Each branch w™(k) represents one wave mode m.

-



Polarisation vectors Inserting relation {14) into the homogeneous equation {12)
a solution for specific wave mode can be found. According to known rules of linear
algebra the vector that solves {12) has to be the eigen-vector corresponding to the
zero eigen-value of the tensor

AL(k) = A% (K w™(k)).

Such an eigen-vector is not determined uniquely since its complex amplitude is arbi-
trary. Therefore it is convenient to choose an unimodular complex vector e™(k) as a
representative of all solutions of the equation {12) for given wave mode. Such vector
ig called the polarisation vector and besides the dispersion relation {14) it iz one of
the basic characteristics of the specific wave mode®.

Specific wave modes Asan illustration of determination of particular wave mode
and its characteristics from the general dispersion equation {13) one may choose
well known Langmuir, transverse and ion-sound waves in plasmas without ambient
magnetic field. The first thing has to be done is calculation of the dielectric tensor.

In case of two eigen-values are zeroed simultaneously one obtains two-dimensional space of solutions and the
concept of polarisation vector has to be replaced introducing polarisation tensor instead (see [Melrose 1980])

8



The kinetic approach gives for unmagnetised plasmas following result {according to
[Melrose 1980)):

(w—k-v)ds + kv, Ofa(p) 3
Eij(k’w):&j—'_ZEDw?/ w—k-v+4i0 e P b, (15)

the sum is performed over each particle species @ and small imaginary part in the
denominator indicates that correct integration path according to Landau prescription
has to be used. For isotropic medium the dielectric tensor can be separated into
longitudinal(s') and transversal (&) parts as:

kik;

Eij(k,w) = Ei(k,w) ? + & (k,w) (51‘3‘ — %) (16)

and explicit calculation for Maxwellian distribution function gives:
1
! : 9
g(k,w)=1+ ; m [l — Pya) + iV T exp[—yaﬂ
(17)
(kW) —HZ “po #(Ya) + iV Tya exp(—13)]



Plasma dielectric tensor — intro to its calculations
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Plasma dielectric tensor — intro to its calculations
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The kinetic approach gives for unmagnetised plasmas following result {according to
[Melrose 1980)):

(w—k-v)ds + kv, Ofa(p) 3
Eij(k’w):&j—'_ZEDw?/ w—k-v+4i0 e P b, (15)

the sum is performed over each particle species @ and small imaginary part in the
denominator indicates that correct integration path according to Landau prescription
has to be used. For isotropic medium the dielectric tensor can be separated into
longitudinal(s') and transversal (&) parts as:

kik;

Eij(k,w) = Ei(k,w) ? + & (k,w) (51‘3‘ — %) (16)

and explicit calculation for Maxwellian distribution function gives:
1
! : 9
g(k,w)=1+ ; m [l — Pya) + iV T exp[—yaﬂ
(17)
(kW) —HZ “po #(Ya) + iV Tya exp(—13)]



Here, wy,, and Ap, are appropriate plasma frequencies and Debye lengths, respec-
tively:
a ﬂa@i Vr:r

= ADa = —, 18
po =72, Da =7 (18)

and the following abbreviations (V, = kgT /m, designates thermal velocity of parti-
cles of species av) were used:

ot
V2KV,

Inserting the hermitian part of the dielectric tensor (i.e. retaining real parts of longi-
tudinal and transversal components only) in the form of {16) into the equation {12)
the equation

oly) =2y E‘Xpﬁyg)/a exp(t*)dt, Vo =

(Re {'(k,w)}) - (n® — Re {e'(k,w)})* =0 (19)

15 obtained with the refractive index n defined as

ck
n=—.
W

10



The anti-hermitian part not considered for present purposzes will be taken into account
later in the section 1.2, paragraph Absorption coefficient.

Now, expanding the function ¢{y) into series for the high-frequency limit {y 3 1)
and retaining only first few terms of electronic contribution to this function (the
contribution of ions i reduced by factor of m, /m, relatively to that of electrons) the
transversal part of the equation {19) becomes

L:J2

ngzl_ PQ“Z
L

or using the refractive index definition written in more familiar form
w (k) = wi, + k. (20)

The just derived equation {20) represents the dispersion equation for transversal {elec-
tromagnetic) mode.

The longitudinal part of eq. (19) gives two wave modes depending on the frequency
limit used. Forw > £V, ie. y. > 1 the expansion of the function ¢ yields dispersion

11



equation
w (k) = w2, + 3KV (21)

which describes well known Langmuir waves.
On the other hand, expanding formulae for longitudinal part of the dielectric tensor
in the limit

EVi € w g kV,

the ion-sound mode with the dispersion equation
k?e?

205y —
(k)= L+ k2A%,

(22)

ig found. Here, the ion-sound wave speed ¢, is defined by

Cqg = (g - )\De~

1.2 Energetics in the waves

The electric perturbation in plasma waves induces also the perturbation of magnetic
field and, due to medium response, also variations of plasma velocity, stresses and

12



pressure. All these perturbations raise the total amount of energy contained in plas-
mas and the difference over the equilibrium state can be ascribed to the waves. It
is straightforward to compute the electric or magnetic field energy in waves knowing
the electric field amplitude. On the other hand, mechanical energy connected with
plasma motions and stresses is hard to be identified in general. Nevertheless, the total
amount of energy contained in particular wave mode can be, fortunately, related to
the electric field energy in this mode independently. Generally speaking, it is done
rewriting the dispersion equation

detfxi-j(k, {dj =0 (23)

generaliged to the case of weakly damped or growing waves {the anti-hermitian part of
the dielectric tensor is included now) into the form of the energy conservation law {for
details see [Melrose 1980]). The explicit calculations gives for the ratio RE between
the total phase energy density®w™(k) and the phase energy density of the electric

“Phase energy density is the energy of wave mode m contained in elemental volume of phase space - ie. energy
per unit volume and unit cube of k-space

13



field wg{k) in the mode m following expression:

Rpto =0 - (L eriew]) 24)

e 80.? w=wm(k)

where £™(k, w) iz abbreviation for

™k, w) = (k)T (k)e™ (k, w)

j ]
and the electric field {phase) energy density reads:

_ elEK)[P (2m)°
2 Vo

wg (k) (28)

Energy radiated by extraneous current The extraneous current on the R.H.
side of the expression {10) represents a source term in the wave equation. The wave
energy U radiated {or absorbed) by this source i given by the work of the extraneous
current against the consistent electric field of the wave, i.e.:

+oo
U= / /jmt(li‘j t) . B(r,t) d°r dt =
—D0 '4
14



Calculations of energy ratio Re
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Calculations of energy
ratio Re

Important for calculations of
transition probabilities/Einstein
coefficients — see Slide 8.
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field wg{k) in the mode m following expression:

Rpto =0 - (L eriew]) 24)

e 80.? w=wm(k)

where £™(k, w) iz abbreviation for

™k, w) = (k)T (k)e™ (k, w)

j ]
and the electric field {phase) energy density reads:

_ elEK)[P (2m)°
2 Vo

wg (k) (28)

Energy radiated by extraneous current The extraneous current on the R.H.
side of the expression {10) represents a source term in the wave equation. The wave
energy U radiated {or absorbed) by this source i given by the work of the extraneous
current against the consistent electric field of the wave, i.e.:

+oo
U= / /jmt(li‘j t) . B(r,t) d°r dt =
—D0 '4
14



(26)
dk dw

_ /_ :j / Re {§"/(kw) - Blk @)} g

where the Parcevals power theorem was used. Solution of the wave equation {10) can
be expressed as

Lol ext
Eik w)=——A(kw)- i7"k w), (27)
Wen
where the matrix A'(k,w) is the inversion operator to the dispersion tensor (11)
and according to the tensor algebra rules it is written down using its co-factors (sub-
determinants of transposed matrix) Ay as:

)\ik(kj L:J)

Ak, w) = Ak o)

Now, inserting the particular solution {27) into the formula (26), the wave energy
generated by the extraneous current density j°® can be computed. Contributions
to integral over w are zero with exceptions of the poles of function in integrand.
Such residues have to be treated carefully, and the integration has to be performed

15



over the path in the complex plane according to Landan prescription. Each residue is
connected with one zero of A{k, w), and thus each pole represents the energy radiated
in one specific wave mode. Explicit calculation gives for energy radiated by extraneous
current in wave mode m the expression:

RE(k (k) - o= s d’k
/ ) e )| g

where the bar over the polarisation vector e™(k) means complex conjugation as usual.
Apparently, the quantity

9 ) - (k™) 28)

that represents the wave energy generated by current density j** (k, w™(k)) in the
mode m per unit cube of k-space, or itg time derivative — the radiated power

(k) — duz‘t(kj

will be more relevant ones for computation of radiation in particular emission pro-
cesses, as described in the following section {2).

16
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Absorption coefficient The advantage of approach used above allows one to
involve also absorption of waves consistently. It can be eagily done identifying the ex-
traneous current with the implicit source term caused by anti-hermitian part £%(k, w)
of the dielectric tensor, i.e.:

75k, w) = —iggw gk, w)Ei(k, w). (30)
Now, the absorption coeflicient
1 dw™k) 1 du™(k)
k) = — = — 31
7R = g @ Vork)  df (31)

i computed inserting the current density {30) into the relation {28). The final result
1s as follows:

77k) = 2™ (k) RE (K)e (k)ef (k)i (k, ™ (k). (32)

F

The absorption coefficient v™{k) may reach both positive and negative values de-
pending on the anti-hermitian part f;(k,w) of the dielectric tensor. Negative values
then correspond to self-generation of waves. If the anti-hermitian part £i,(k,w) is
identified with that for Maxwellian plagmas expressed by eq. {17) the absorption

17



coeflicient is positive and corresponding wave energy decrease is known as Landan
damping.

When some wave mode experiences absorption {either positive or negative) its fre-
quency w™(k) becomes a complex quantity what reflects changes in wave amplitude.
Thus, relation between the imaginary part of frequency w™{k) and the corresponding
absorption coefficient defined by eq. {31) should be found. Since the electric field
amplitude in the wave evolves as E(k,t) o exp[—iw(k)#] and w(k) < E*(k) these
two quantities are related simply as

¥™Mk) = —2Im{w™(k)} (33)

2 Specific emission mechanisms

Now, when the general theory of propagation and generation of the waves in plasmas
has been reviewed, the extraneous current density and its Fourier transform has to
be identified for each specific emission mechanism to calculate the energy or power
radiated according to the formula {28).

18



2.1 Bremsstrahlung and gyro-synchrotron radiation

It iz well known fact from the theory of electromagnetic field that whenever the
charged particle changes the vector of its velocity the electromagnetic radiation is
emitted. There are two natural kinds of such an accelerated particle motion in plasmas
implying two basic emission mechanisms:

1. non-rectilinear motion of electron in the electric field of ion during electron-ion
encounters in thermal plasmas — resulting radiation is called bremsstrahlung or
free-free emission,

2. spiralling motion of particles {especially electrons) in the magnetic field imposed
to plasmas — gyro-radiation or synchrotron radiation is the proper assignation for
this radiative process in dependence on the spiralling particle energy (medium
or relativistic).

Both emission proceszses will be now discussed further.

19



2.1.1 Bremsstrahlung

The relevant quantity that is to be found is the power P{w) radiated in the electro-
magnetic mode in unit volume of plasmas per unit frequency interval. To compute
this quantity one may to start with determining the energy radiated by single elec-
tron during one encounter with single ion, then calculate the power radiated by the
electron during multiple {continuous) enconunters with ions taking into account the
encounter frequency, and finally sum over the electron distribution function.

The energy radiated during single encounter can be found from the equation {28)
identifying the extraneous current density with that of one moving electron. If the

trajectory of the electron
r = r(f)

is determined, the current density connected with this moving {point) charge can be
expressed as

j(ryt) = —ev(t)d (r — r(t))

20



and 1ts Fourler transform is

jikw) = —e/_ mv(i) exp [—t {k - r{f) — wi)] dt. (34)

Here, v{t) = r{f) is the electron instantaneous velocity and &{z) iz the Dirac delta
function. For the electromagnetic mode with the refractive index

k
n(w)zczzl

in igotropic thermal plasmas {see eq. 20) and the non-relativistic particle {v{t) < ¢)
the variation of the term k - r(#) is negligible comparing to the second expression wt
in the exponent. Thus, the space-dependent term contribute only by constant factor
of complex unity {which can be omitted) to the Fourier transform of the extraneous
current. This approximation corresponds to omitting the internal retardation inside
the source in classical electromagnetic field theory {dipole approximation). Retaining
the time-dependent term only in the exponent one can find for the extraneous current
caused by single particle the following expression:

. €

(k) = —eview) = —afw), (36)

21



with a{w) being the time Fourier transform of the particle acceleration. The total
energy radiated by the accelerated charge in the electromagnetic (Transversal) mode

r_ .1 d*k
Un = f (k)(Z?rjg

can be re-expressed using the relations

ck

n{w)’

d’k = E*dk d (36)

and averaging over the =olid angle {! as the sum of contributions with frequency w:

0 = [T o = o o [ a )P, 37

dmeq 3mcd

where formula {28) for energy radiated caleulation with the extraneous current density
(35) was used. For radio radiation only the distant encounters with large impact
parameter b are important as the characteristic frequency radiated is about f = v/b.
For such encounters the trajectory r{f) of the moving electron is only slightly departed

22



from rectilinear motion and for the time Fourier transform of the acceleration a(t) in

the electric field of i1on
e Zie r{t)

me dweg |r{t)]?

a(t) = —
with the electron trajectory approximated by relation r{f) = b + vt one can write

AT T bt v
a{w) = ——E/ v = - exp{iwt) dt. (38)
me dmeo J oo (B2 4 0242)2

Here, b is the vector connecting the ion and the closest point on the electron straight-
line path {its length is the impact parameter b), Z; is the {fully ioniged) ion proton
number and v is the electron velocity {constant in present approximation). Comput-
ing the integral {38) and inserting the result into the equation {37) the electromagnetic
energy radiated by electron during single encounter into the unit interval of frequency
is expressed as:

Pl IS g () g (B))

dmey 3medmiud v

with K,{2) being the MacDonald function of index v {modified Bessel function of the
23



second kind).

The emisszion of electromagnetic waves is rather continuous as electron experiences
multiple encounters with many ions simultaneously. The power radiated by the gingle
electron will be thus relevant quantity. To compute it, one has to estimate the number
of collisions per unit time. Considering various impact parameters the radiated power
reads:

single

Pl (wiv) = 27rnw[ u{w; b) b db. (40)

bm@'
The integration has to start with the value b,;, > 0 as for smaller impact parame-
ters the present approach is not valid due to violation of straight-line approximation

and/or due to need of quantum mechanic treatment of the problem.
The last step in finding the power PT(w) radiated by bremsstrahlung from the

unit volume into unit interval of frequency consists in summing all contributions
(40) to emitted power by single electrons with velocity v over the electron velocity
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digtribution. Thus,
PTw) = [ L) (v (41)

where for the electron distribution function f{v) the normalisation

o= [ 1

was used. According to [Melrose 1980] the explicit computation for the Maxwellian
distribution in 'G5 units finally gives

16 n{w)Z ebnn, (2

PT(M) ) 32

where the Gaunt factor

T
_GTE! %Ac
7 (Te, w)

approximately equals to the Coulomb logarithm in the classical approximation used
here.
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2.1.2 (Gyro-synchrotron radiation

Ag already mentioned above, the gyromagnetic emission {called synchrotron radia-
tion in case of relativistic electrons) is caused by particles spiralling in the imposed
magnetic field. The presence of the field brokes the isotropy of the medium and thus
the power radiated into the electromagnetic mode by unit volume into the unit fre-
quency interval and unit solid angle, so called emissivity 7 (w, @), will be the relevant
quantity describing efficiency of the gyro-synchrotron radiation.

To estimate it, firstly the extraneous current density corresponding to particle {only
electrons will be considered further) spiralling motion has to be identified. Then,
nusing the essential relation (28) and the definition (29) the power p’ (k) radiated
in electromagnetic mode into the unit volume of k-space by single electron can be
computed. Finally, using expression {36) for element of k-space in spherical coor-
dinates the emissivity n’{w, ) due to single electron is computed. Moreover, for
highly-relativistic particles several simplifications are allowed in the single-electron
emissivity formula and in case of well-chosen, but still realistic, distribution functions
the sum over particle velocity distribution can be made analytically. Thus, the ex-
pression for emissivity from the unit volume of plasmas due to synchrotron radiation
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1z found.

The first step requires the knowledge of the particle trajectory r{#) that has to be
inserted into the relation {34) to find the current density cansed by single electron.
When the coordinate axes are chosen appropriately {see [Melrose 1980]) the spiral
orbit of the electron in the magnetic field B is described by radius-vector with the
following components:

r(t) = (Rsin(Qt), Reos($2t), vyt)
with definitions of the gyro-frequency £ and the Larmor radius R

QEBB, EU—J_

VI, €2

used; v is the Lorentz factor. The goniometric function in the exponent of expression
(34) is to be expanded into series with the Bessel functions Ji(z) as the Fourier
coeflicients. Consequently, the Fourier image of the extraneous current density is

jik,w) = —2me Z Vs, p,k)dw — sQ — k”v”)
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where V{s p, k) expressed in components reads

Vs, p, k) = (’UJ_ Z J(2), vy J2), V) JE(Z)) (43)

z

the relativistic relation for electron momentum

P = VeV
was used and the argument of Bessel functions is

kil kipl
€2 eB
Inserting this current density into the formula (28) and differencing with respect

to time the power radiated by single electron into the element of k-space in the
polarisation given by the vector el (k) is evaluated as:

ZEkJ_R:

()

plk)= > i—j RE(k)|eT(k) - V(s, p, k) 2 Slw —sQ— k). (44)

o= —0xJ
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Now, using the element of k-space {36) expressed in the spherical coordinates the
emnissivity due to single electron is

e’n?(w, Ow? 9

dricgc® Ow e'(0) - V(s,w,0)

(wn{w,8)) RE{w, 6) X (48)

‘ o

ngngie(w ! '9) —

X4 lw(l — nfw, H)E cosexcos ) — SQ]
c
with o being the electron pitch angle (tana = p1 /p|) and where ¢ describes wave-
vector inclination with respect to the magnetic field:
k-B

cos ) = ————.

k||B|

Synchrotron radiation [t israther difficult to sum the single-electron emissivity
(45) over the electron velocity distribution to find emissivity per unit volume. How-
ever, in case of relativistic energies of radiating particles several approximations can
be done. For isotropic power-law in energy distribution function

fE)=K-E™
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what is very common case in synchrotron radiation sources, one may for emissivity
tensor write (in C'GS, see [Melrose 1980)):

K(mecg)l—a . . 2{4.} 1-a
nilw, 8) = oy V32 sin @ H{a) Y . (46)

Here, the components of matrix H{a) are as follows:

a—1

Z —
Hyp = 2 r 3a+ 7 r 2a—1

3(a + 1) 12 12

1
—icot f 20 2 L a+2 3a -+ & 3a +4
Hyy = —Ho = 22 r I

. . 3 (3981116’) a ( 12 ) ( 12 )

p—2
3 0)27 7 3 T 3a — 1
me- e () ")

12 12

a is the power-law spectral index, K the normalisation factor and I'(z) Fuler gamma
function. Using tensor generalisation of emissivity one is able to describe power
radiated in arbitrary polarisation state of synchrotron radiation.
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3 Plasma emission process

Standard radiative mechanisms — the bremsstrahlung and gyro/synchrotron radiation
described above are of use also for solar corona radio emission, particularly for quiet
sun radiation and slowly-variable component. Nevertheless, solar radio bursts that
often consists of intense narrow-band fine structures hardly could be explained only
in terms of these processes, since they have by their nature broad-band emission spec-
trum. Moreover, there iz quantitative disagreement in values of radio flux predicted
by formulae e.g. {42) or {46) using reasonable parameters of coronal plagmas and
those observed during the bursts.

On the other hand, very hot and sparse coronal plasmas may, due to lack of colli-
sions, easily be in the state of thermodynamic non-equilibrium with non-Maxwellian
distribution function, particularly during solar transient events {e.g. flares or CMEs).
Under such circumstances the anti-hermitian part £f({k,w) of the dielectric tensor
(15) — or its counterpart for magnetised plasmas — can result to negative values of the
absorption coefficient {32) in some range of wave-vectors for the specific wave mode
m. One than says, that distribution function is unstable with respect to generation
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of wave mode m within some range of k-gpace. The negative absorption is alzo often
called stimulated or 1nduced emission.

Such self-generation of waves in unstable plasmas, similar to light amplification
in lagers as will be seen further, represents the basis of so called plasma emission
mechanism. Since there are many types of distribution functions unstable to large
amount of wave modes the term “plasma emission” should be regarded as generic
name for all radiative processes based primarily on the negative absorption of partic-
ular wave modes.

Unfortunately, for the electromagnetic mode which only can escape from the coro-
nal plasmas and reach Farth radictelescopes the absorption coefficient (32) is always
positive with one exception of so called electron-cyclotron maser radiation — see para-
graph Absorption coefficient in the section 3.1.1. Thus, some mechanism of
conversion between unstable plasma modes and the electromagnetic one is required.
Such mechanism is available due to non-linear coupling among variations of plasma
parameters {e.g. electric and magnetic field, electron density ete.) in different wave
modes.
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To sum up, plasma emission mechanism is generic name for class of radiative
processes working usually in the following two stages:

1. the wave mode m unstable in some range of k-space is generated due to deviation
of distribution function from equilibrinum Maxwellian distribution.

2. this mode m is converted via non-linear coupling into the electromagnetic one
that escapes solar corona. and can be detected on Earth.

Since the region of unstable waves in k-space is usually limited to small extent and
also the wave mode conversion is strongly resonant process as will be seen later,
resulting radio emission is narrowband and possibly with fine structures as usually
observed during solar radio bursts.

Due to mentioned similarity with radiation amplification in lasers it is convenient
to adopt principle of detalled balance between emission and absorption processes
used in radiative transfer elementary physics and quantitatively expressed using the
Einstein coefficients. The theory built on these axioms will be in usnal quantum
notation briefly reviewed now.
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3.1 Weak turbulence theory

Stimulated emission and other induced processes such as wave-particle or wave-wave
scattering can be under some assumptions described consistently within the weak
turbulence theory. It i3 based on semi-classical formalism — the particles in states
with momentum p are described by distribution function f{p) while the waves in
mode m with wave-vector k is described by the occupation number N™(k) {number
of quanta of wave mode m in state with momentum ik) defined as:
my _ WK

R (@
Such description brings not only the advantage of uniform treatment of various in-
duced processes from the wave generation point of view, but also it enables consistent
estimation of back-reaction of particles to wave radiation or absorption since the prin-
ciple of energetic balance is imposed on microscopic level here. On the other hand,
approach {47) to wave distribution disables correct description of coherent processes
since the phase information about mode depicted by occupation number is lost. Thus,
the assumption that phases of waves are unimportant — so called random phase ap-
prozimation — plays key role in the weak turbulence theory. Coherent processes will
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be discuszed in the next section 3.2, however such general theory as in case of inco-
herent emission has not been available yet.

One may start with subsget of this general description applied to stimulated emis-
sion of waves due to unstable particle distribution function and its back-reaction to
wave generation — so called gquasi-linear theory.

3.1.1 Quasi-linear theory

Transferring wave generation and/or absorption processes onto microscopic level one
has to use, according to quantum physics, probabilistic description of each elementary
emission /fabsorption action. This is usually done introducing the Finstein coefficients.

Einstein coefficients Consider two states described by particle momenta p and
p . Let the total number of particles in state p is /N, and NN~ for the state p~,
respectively. According to quantum theory the transition of one particle between
states p and p~ is accompanied by emisgion or absorption of quantum of waves with
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frequency given by condition
fuw = |E(p) — L(p7)]. (48)

Here, F{p~) and F(p) are particle energies in the states p~ and p, respectively. In
cage of free particles the energy of the state p reads in non-relativistic limit

Fip) = =— 49
(p) =5~ (49)
with m being the particle mass, components of state vector p are simply Cartesian
components of particle momentum. On the other hand, in magnetized plasmas the
clagsical treatment is not sufficient and relativistic quantum theory gives for the eigen

energies the following expression (spin of particle is ignored here, see [Melrose 1980]):

E(p)= \/m%c4 + 2nlg|Bhc® + pﬁcg. (50)

Due to periodical motion in perpendicular direction the momentum p has the per-
pendicular component discrete — determined by the integer number n. Parallel com-
ponent is continuous and corresponds to projection of momentum to the magnetic
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fleld direction, i.e.:

p={pL,p) = (v’?n A2 m, p”) (51)

where {2 is the gyrofrequency already introduced in the section 2.1.2.

+
P
Jﬁ'L.lr‘ll. JﬁLJﬂ\_)'_-F
ho (k)
) p
AVAVAVAVS =
ho (k)
P

Figure 1: Absorption and emission processes due to p* < p and p < p~ state
transitions.

37



Now suppose that E{p~) < E{p) (see Fig. 1) and consider probabilities {transi-
tion rates) w_ ;bg(k), w¥(k) and ﬂ;md(k) of transitions between the states p and
p~ due to absorption, spontaneous and induced emission of quantum of mode e with
wave-vector k (referred as {rm, k) quantum further) per unit time, respectively. The
rates W;' ;bs(k), W;; “P(k) and W;;md[k) represents Finstein coeflicients for transitions

p = p . The total rate of transitions p~ — p due to absorption is
dN™(k)
df

while total rate of transitions p — p~ as consequence of spontaneous or induced
emission reads

= W2 (k) N,- N (k) (52)

dN™k) oo
—_— W _
di oy
The relations between the Finstein coeficients can be obtained in the state of ther-
modynamic equilibrium but it should be noted, that resulting relations are valid re-

gardless of macroscopic state of plasma-waves system as they are fundamental char-

(k)N + w4 (k) N, N ™ (k). (53)

acteristics of the p = p~ transitions. In the state of thermodynamic equilibrium
adopted principle of detailed balance applies implying that rate of change of occu-
pation number N™k) of {m, k) quanta due to absorption and emission processes
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during p < p~ transitions together is zero. Thus combining equations {52) and {53)
one obtain
dN™(k)
di

In the state of thermodynamic equilibrium the distribution of wave quanta is given
by Planck law

o -

7,5 7, 17 m ., abs m
= WP ()N, + WP ON,N (k) — w2 (k) N,-N™ (k) = 0. (54)

L
exp (mg) '

kgl

N™k) =

[nserting the Planck law into the eq. {54) and taking into account that {54) has to ap-

ply for arbitrarily high temperature 7' the relation among three Einsteing coefficients
is found® :
m,abhs M50 m,1nd — ..M
w oo k) =w (k) =w 2 k) = wi (k). 55
*The relation somewhat differs from that used in classical radiative transfer physics because the occupation

number N™(k) iz used here instead of spectral energy density or specific intensity f™(w, 8, ¢) (f,¢ are spherical
coordinates) used in radiative transfer
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Quasi-linear equations Using the relations {(55) the rate the {m, k) quanta are
emitted at in the general {non-equilibrium) state due to all transitions that can be
taken into account is (See eq. 54):

ANVT{k) Z [N, + N™k)(N, — N,-)] . (56)

However, the actual number of possible transitions is much less than it seems from
eq. {56) since the quantum condition

p—p =hk

selects only allowed ones. In particular, the transition rate W;;_(k) can be expressed
as:

W (K) = w™(p, k) - 6(p — p~ — k). (57
Now, one would like to change from discrete notation used hitherto to the contin-
uous one. Thus, the number of particles N, in the state p should be replaced by

distribution function f{p) and double sum in the equation {56) by integration over
p and p~. Using the expression {57) for the transition rate w{p, p~, k) , which is
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now re-interpreted as probability of quantum emission per unit cube of k-space, the
integration over p~ is performed trivially due to é-function. The expression f{p—#k)
appeared in the result can be for Ak < p expanded in Taylor series

L 20P) L ey O (D) 0°f(p)

f(pj:ﬁk):f() ap 2 Japﬁp

_I_
When only the terms that are meaningful in classical limit & — oo (see the para-
graph Transition rates calculation) are retained, the first quasi-linear equation

describing wave generation {or absorption) in plasmas described by distribution func-
tion f{p) is finally found:

%’2(1‘): / w™(p, k) ( f(p)+Nm(k)ﬁk-a‘g(pp)) &p (58)

As was already mentioned, the advantage of this semi-classical approach consist be-
sides other in possibility of homogeneous description of back-reaction of particle distri-
bution to wave emission /absorption processes. On the microscopic level, each emission
or absorption of quantum of waves is connected with transition of particle between
two states. Consequently, the time change of number N, of particles in state p is
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given by the difference between net rate the quanta {m, k) are emitted at due to
transition {p™ = p+ &k) — p and net rate the quanta {m, k) are emitted at due to
transition p — {p~ = p — kk), i.e. {see Fig. 1):

pr+p N + N™K){(N,+ — Z wr_(k) [N, + N™k)(N, — N,-)].

(59)
Transferring from the discrete notation to the continuous one again and using the
Taylor expansion of the transition rate w™{p*, k) = w™{p + fik, k) the second
quasi-linear equation describing back-reaction of particles distribution to the wave
emission /absorption processes reads

dﬁ(ﬁ) / Bl %{ m™(p, k) (f(p)+Nm(k) ﬁk-a‘gi)p))] é?‘)‘g. (60)

[n the magnetised case p has to be interpreted in agreement with equations (50) and
(51) and the wave-vector k consequently has components:

k= (kL k)= (% kn) (61)
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with s being integer number. Using these relations, the quasi-linear equations {58)
and {60) can be rewritten for the case of plasmas with ambient magnetic field — the
explicit calculation could be found in [Melrose 1980).

Transition rates calculation To make equations {58) and {60) meaningful for
practical computation one has to calculate the emission rate w™(p,k) . It can be
done when one re-interprets the power radiated p™(k) considered in the section 1.2 ag
continuous process to be — according to quantum physics ideas — the series of quanta
emissions with emission probability per unit time w{p, k), i.e.:

p"{k) = ™ (k) w"(p, k)

Thus, using relations {28) and {29) the emission rate can be expressed as:

wh{p, k) = % (ﬁwi 0 Rﬂiék} em(k) - jeﬂ(k,wm(k))f) (62)

In the force-free collision-less plasmas particle moves on rectilinear trajectory. Con-
sequently, the extraneous current density in the equation {62) is to be identified with
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that given by equation {34) with rectilinear trajectory

r{f) =rg+ vt
inserted. Fxplicit calculation gives
2rgRE (k) — 2
™(p, k) = L (k) -v]” §{w™k) —k- 63
7, = i = ) vl (0~ v) (63)

For the magnetised case with spiral trajectories the result can be obtained directly
generalising the relation {44) for power radiated by single electron into transversal

waves to expression valid for arbitrary mode and particle. An explicit calculation
glves:

w{p, k) = Z w™{(s, p, k)

F=—00
where w™{s, p, k) is abbreviation for

B QWQQRE‘(k) _

w{s,p, k) = (k) 0 e7(k)-V(s,p,k)|” & (w™k) — s — kpuy)  (64)
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with {2 being the gyrofrequency and the quantity V{s, p, k) defined by relation {43)
in the section 2.1.2.

Absorption coeflicient Aswas already mentioned, the first quasi-linear equation
(58) expresses the emission or absorption of wave quanta due to medium described
by distribution function. The rate of occupation number change can be separated to
two parts — one independent of the occupation number itself

[dN;(k)]Sp — / w™(p,k) f(p) &’p

and one linearly proportional to it

[dN;(kj

] " —y"k)N"(k)

where v™k) reads
Of(p)

d*p. (65)



As the superscripts over each part indicate the former part describes spontaneous or
thermal wave emisgion whereas the latter belongs to induced processes. The quan-
tity v™(k) iz absorption coefficient by definition and its sign depend on what process
prevails — whether absorption or stimulated emission of waves. In case of negative
values also the term growth rate is often used.

[t iz clear from expression (65) that in case of positive slope of distribution funection
f(p) in the direction of wave-vector k the absorption coefficient v™(k) can reach
negative values implying so self-amplification or instability of waves. The positive
slope corresponds to inequality

Np+?’1k > Np

in the formula {56), which is only discrete form of the first quasi-linear equation {58),
and thus inverse population of energetic levels is required {in unmagnetised plasmas)
for self-amplification to work. This feature of the theory of induced processes in plas-
mas makes it very close to, now already classical, physics of lasers as was already
mentioned in the introduction to this section. Probably the most known examples of
amplification of waves due to such inverse population of energetic levels in the field
of plasma physics are the “Bump-in-Tail” or “Two-stream” instabilities of Langmuir
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waves. The positive slope of the particle distribution function is reached by energetic
particle stream propagating through the thermal background plasmas in this case.

In magnetised case, the momentum p and the wave vector k has to be interpreted
according to expressions {51) and {61) and, consequently, the formula {65 for the
absorption coefficient v™(k) rewritten for use in magnetised plasmas reads:

=y fwm(s,Pj k) h(isfai g 6‘?9”) flp)d’p  (66)

a=—0a

with emission rate per s-harmonic w™{s, p, k) given by the relation {64).

The particular importance of the formula {66) consist in possibility of direct ampli-
fication of electromagnetic mode in process known as cyclotron maser. The cyclotron
masger works if: 1) conditions for negative absorption are fulfilled in some range of
wave-vectors and, 2) generated electromagnetic mode can escape the solar corona. It
can be shown, that the absorption coefficient {66) with emission rate {64) allows such
situation under some conditions. It is unlike the unmagnetised case, where compo-
nents of k-vector is to be interpreted simply as Cartesian components of the wave
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vector. Then, the resonant condition contained implicitly due to é-function in the
relation {63) can be fulfilled only if

v > v, (67)

where v, = w(k)/k is the wave phase velocity. Since refractive index for electromag-
netic waves n’ (k) < 1 for all k-vectors, negative absorption of this mode is forbidden
in the case of unmagnetised plasmas as a consequence of apparent inequality

v < C

Hence, the mode conversion between waves that can satisfy the condition {67), and
their amplification is therefore possible, and the electromagnetic ones is required for
plasma. emission process to work. Some mechanisms of the mode conversion will be
discussed in sections 3.1.2 and 3.2.2.

Let us finish discussion of the absorption coeflicient with legitimate question of
relation between the coefficient (65) calculated within the quasi-linear theory and
that determined classically in the section 1.2 by formula (32). The answer is, that
both quantities are identical provided that for computation of the anti-hermitian part
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of dielectric tensor in the expression {32) the relation valid for collision-less plagmas
given by equation {15) is used. Thus, for collision-less damping of waves the two
approaches are equivalent.

3.1.2 Other induced processes

The indubitable advantage of the weak turbulence theory is its microscopic level ap-
proach to particles-waves system. This approach allows one to treat homogeneously
not only processes where single particle and single wave quantum take part, as de-
scribed by quasi-linear theory reviewed briefly in the previous section 3.1.1, but also
multiple quanta-particle or quanta-quanta interactions as well. Among many such
processes the two ones are of great importance, particularly for the second stage of
plasma. emission:

1. the induced scattering of waves on particles
2. the three-wave interactions

as both of them represents an efficient way of mode conversion.
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Induced scattering When some wave mode propagates through plasmas the in-
duced motion of particles {i.e. induced current) connected with this mode becomes
the source of waves. In the continuum approximation for homogeneous plasmas the
same wave mode with the same wave vector and frequency is reproduced only, just in
agreement with the Huygens principle, and contributions to different waves mutually
cancel out. Nevertheless, this is not exactly true when the discrete character of matter
is taken into account. The sum of radiation from each single particle contains besides
the initial wave field also component with different wave-vector/frequency or even of
different mode. This component of wave field is referred as scattered wave further.

Such scattering of waves by particles is well known from classical electromagnetic
field theory and as an illustrative example the Thomson scattering of light on free
electrons in the solar corona can be adduced. Nevertheless, this process may have
besides its spontaneous version also amplified form. It applies if the absorption coef-
ficient {65) of the wave given by the envelope caused by interference between initial
and scattered modes is negative. Then this envelope wave is amplified and thus the
rate of the scattering process is proportional to initial and scattered wave occupation
numbers, as expected for an induced process.
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Both, spontaneous and induced contributions to the scattering can be described by
set of kinetic equations whose derivation in the scope of the semi-classical formalism
used is very similar to that of the quasi-linear equations {58) and (60) — see Melrose
1980] for details. For scattering of the {m, k) waves into the (m/, k') ones {the process
i usually schematicaly designated as m +— m' in literature) the following relations

are found:

dN;(k) _ /Wmm"(pj k, kf) x (68)
X (f(p) IN™(K) — N™(K)] + N™ (k") N™(k) A(k — k') - ai; g’)) p %
and
Mz—t(m = — fwmm;(p,k, k') x (69)

x (f (B)[N™ () — N™(k)] + N™ (K)N™(k) (ke — k) - 2L (p)) 43p 2K

Ip (2m)®
The first equation describes the rate of change of the occupation number of the initial
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wave {m, k), similarly the second determines creation/annihilation of the scattered
(m/ k") quanta. As a consequence of scattering process the particle distribution also

varies. The corresponding equation as well as the explicit expression for the scattering
rate W™ (p, k, k') can be found in [Melrose 1980).

Three-wave interactions Another possibility of the mode conversion is given
by non-linear wave-wave interactions. The physical basiz of this process for simplest
case of coalescence of two waves into the third is as follows: The each wave modes
are independent only in the linear approximation. Nevertheless, in reality the wave
propagating in plasmas where another wave is present does not see homogeneous
medium but that modified by the former wave, and vice versa. As a consequence, the
non-linear contribution to current appears and becomes the source of the third wave.

The process just considered above can be also described within the semi-classical

formalism of the weak-turbulence theory provided the phases of each quanta are
uncorrelated. This is always true in the case of broad-band distributions of waves
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since the coherence time for the wave mode m can be estimated as

1
Awm™(k)

Te ~

where Aw™(k) is the characteristic width of the mode m distribution. The coherent
version of this processes ig described by strong-turbulence theory based on the Za-
kharov equations and briefly reviewed in the section 3.2.2.

For the coalescence process of two quanta {m', k') and {m" k") into the third
(m, k) (and simultaneously running decay of the final quanta (rn, k) into the initial
ones — schematically m’ + m” = m) the following set of equations can be found in
the weak-turbulence approach {see [Melrose 1980]):

dN™Kk)
at

x (NN (1) — NN (K) — NN (K1)

— / 0 kKK X (70)
dka dBkH
(2m)® (2m)3
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for the coalesced wave occupation number rate of change and

m’ (1.
det(k) — /ummm (k, k.f] kH) X (71)

Pk Pk
(2m)° (2m)?

< (NN (1) — NN () — NN ()

and

de k,"."

"k, k', k) x (72)

Pk K
(2m)° (2m)?

X (Nm’(k’)f\rm”(k”) — N™K)N™ (k’) N™(K)N™ (k”))

for the initial wave quanta rates. The specific conversion rate? umm;m”(k, k', k') can
be determined expanding the current density j*¢(k, w) induced in plasmas into series
of powers of the electric field E(k,w) and the resulting expression is to be found

*The probability that quantum from the unit cube of k-space around the wave-vector k' coalesce per unit time
with the quantum from the unit cube of k-space around the wave-vector k” to result in the quantum from the unit
cube of k-space around the wave-vector k
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in [Melrose 1980]. Note only, that as the consequence of momentum and energy
conservation on microscopic level

Ak + RK =Rk A (K) + Aw™ (k") = Aw™(K)

_ p_ M ) . ..
the specific coalescence rate u™ ™ (k, k', k") contains delta-functions in its expres-
sion, in particular

0k K K < Sk — K — K x 8lw™ (k) — w™ (K) — W™ (K],

what indicates that three-wave interactions are strongly resonant processes.

3.2 Coherent processes

The weak-turbulence theory just reviewed in the previous section is capable to describe
homogeneously many types of particle-wave or wave-wave interactions, provided that
wave field is sufficiently described by occupation numbers —i.e. that wave phases are
unimportant. As was shown, such condition is fulfilled in case of broad-band wave
distributions as after the coherence time 7. the phases of waves are completely mixed.
Nevertheless, sometimes the region of unstable waves in the k-space is so narrow, that
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before the phase mixing state is reached the waves have grown up substantially.

For such cases the weak-turbulence theory is inapplicable and its departure from
the reality can be separated into two kinds of problems:

e the theory predicts qualitatively some process {e.g. instability) to be running,
but further quantitative analysis gives wrong results — usually predicted growth
rates of unstable waves are lower than in reality.

¢ the weak-turbulence version of coherent process does not exist at all.

Hence, processes where also wave phases are important have to be treated another
way. Unfortunately, the general theory of coherent processes — as a counterpart of
the weak-turbulence theory — has not been established yet. Two particular cases will
be discussed in the following.

3.2.1 Two-stream instability

The two-stream ({sometimes also, and more pertinently, designated as bump-in-tail)
instability represents an example of such kind of process whose coherent as well as
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weak-turbulence {just quasi-linear in this case) versions exist. Usually this term is
used for the situation, when thermal Maxwellian distribution {the main stream) is
perturbed by low-density beam of energetic particles giving raise to unstable Lang-
mulir waves.

Generally, the specific dispersion relation for Langmuir waves propagating through
such perturbed plasmas can be found including the beam-contributed part of dielec-
tric tensor into the general dispersion equation {23). For unmagnetised plasmas the
separation {16) of the dielectric tensor into the longitudinal and transversal parts
applies. The Maxwellian beam of electrons

folv) =

(\/ﬁg%)a exp [_(‘;’(; %22]

contributes to the longitudinal component by value {according to [Melrose 1980]):

Act(k,w) = (;;V ) 1= o) + ivFmexp(—1d)], 73)

where ny 18 the beam electron density, U, and AV}, the mean beam velocity and the
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beam velocity spread, respectively; the beam plasma frequency is defined as

npe’
Llpp = 3
P Tetn

(.d—k*Ub

V2EAY,
and the function ¢{y) was introduced in the eq. {17). The equation {19) generalised
for case of damped /growing waves thus gives for longitudinal {electrostatic) waves in
presence of the electron beam relation

ehik, w) + Ak, w) =0 (74)

where £(k, w) is the background plasma contribution to the longitudinal part of the
dielectric tensor given by the relation {17). The presence of the low-density electron
beam may be regarded as a perturbation and hence the specific dispersion relation for

the 1 18 the abbreviation for

h

Langmuir waves w = w’(k) only slightly differs from that obtained in the unperturbed

case wi{k) and given by relation {21), ie.

W k) = wik) + Aut(k).
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[n the first order approximation the equation (74) can be rewritten into the form:
dekk, w)

Aw* (k)
Ouw w=wDL|:k:l

+ Ad(k,w) =0

from which the frequency difference Aw?(k) can be further expressed using the rela-
tion {24) as
Aw'(k) = —wy(K)RE(k)A (k, w). (75)

Now, when wave growth /damping is included, the function ¢{y) contained in the
dielectric tensor perturbation (73) needs to be regarded as a function of complex
variable 3. This fact brings some difficulty with expansion of the function ¢{y) into
series, as this expansion is not unambiguous for physically relevant case |y,| = 1 and
depends on ratio between real and imaginary part of frequency w. In fact, only two
limiting cases can be treated analytically using expansion of the function ¢{y); both
of them will be now briefly dizcussed.

1. Im[y]>1 As a consequence of the v, definition this limit implies the condition

Im{w} > kAV;. (76)
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Since the bandwidth of waves unstable due to presence of the beam can be estimated
by the parameter kAV,, the condition (76) means that wave growth rate iz much
greater then wave distribution bandwidth. In such a case the wave phases are not
mixed during one growth period and become important for the process of instability.
The expansion of the function ¢(y) gives for this limit the following expression:

2
D:pr

Ac'(k, w) == BCETRAD

Inserting it into the equation (75) together with approximations wi(k) = w, and

RL(K) =~ % the cubic equation for the frequency difference Aw’(k) is obtained

1 Wy
Awt(k) == r e .
2 (Aw(k) +w, — k- Uy)

whose solution {one of three) reads

T

pt) = (2 (a0 wy &
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with real constant e and 3 of order of unity {detailed result can be found in [Melrose
1980]). Hence, the growth rate of the coherent version of the two-stream instability

can be estimated as
(k) = (%)Ug “p
and it applies in the low-velocity-spread limit
Ty

1/3
(2) " wp > kAl

T

2. Re[y]= 1 In this limit the expansion of ¢{y) in the first order approximation
glves: ; ;
W iy

(wik) —k-Up)*  (BAV)?

Since imaginary part is small now due to the exponential factor exp(—y?) one could

Ac'(k, w) = — VT Yy exp(—ys3)- (78)

T

expect randomisation of wave phases in times less then one growth period and, thus
applicability of the weak-turbulence theory. And really, inserting the expansion (78)

into the relation {75) and using obvious simplifications wi(k) = w,, B&(k) = % the
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imaginary part of Aw?(k) can be expressed as

L - wpw;gb U — ) ex _(k'Ub—{.pr)Q

This result can be directly compared with that obtained from quasi-linear theory us-
ing say equation {65). Both results are found to be identical when relation {33) is used.

Finally, let us note that terminology on this topic has not been unified yet and
various terms designating the coherent and incoherent {quasi-linear) version of the
two-stream {bump-in-tail) instability are used in the literature. The coherent insta-
bility is also frequently termed as reactive or, particularly in Russian literature, of
fuid type, while for its quasi-linear version the designations resistive or of kinetic
type are used as well.

3.2.2 Strong wave turbulence

Strong wave turbulence is generic term for non-linear wave-wave interactions that
can not be sufficiently described within the weak-turbulence theory just due to great
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importance of wave phases for processes involved. The first description of coherent
wave-wave interactions is that by Zakharov {[1972]) who treated the non-linear inter-
action between Langmuir and ion-sound waves. His approach was roughly as follows:

Firstly, let us consider linear Langmuir and ion-sound waves in homogeneous
plasmas. The time evolution of plasma. parameters variations in these waves can be
derived most simply within the plasma two-fluid theory or alternatively they can be
guessed Fourier transforming the dispersion relations {21) and {22) for relevant waves
into the coordinate space. Hence, the electric field variation in Langmuir waves is
governed by equation

i
%g—ﬁﬁ%ﬁ+aiE:D (79)

and similarly the electron density variation n in the ion-sound waves fulfils (for wave-
lengths A < Ap,) relation

— — 2An =0, (80)

Now suppose that both wave modes propagate through plasma simultaneously. Due
to ion-sound wave the electron density is now distributed non-uniformly and as a
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consequence of the plasma frequency definition {18) the last term W;EEE in the eq.
(79) depends explicitly on time and space. Hence, the equation {79) can be rewritten
in the form o -
g 9 g nir,

W — 31/; AE + wpeE = _wprz -

where the plasma [requency wp. is now re-interpreted as that connected with the
background average density ng. Equation {81) describes Langmuir wave electric field
evolution under the influence of ion-sound density perturbation. The effect of density
distribution can be estimated qualitatively even without solving it by analogy with
the Schrédinger wave equation describing an electron inside the crystal lattice {c.f.
equation 84). Identifying the total density rng+n with crystal single-electron potential
one finds, that the Langmuir electric field tends to concentrate itself in the density
holes, gimilarly as electron probability density in the crystal is high in places of low
potential {in the vicinity of ions locations).

E (81)

On the other hand, non-homogeneous {averaged over wavelength) electric field
influences density distribution due to non-linear ponderomotive force Fx; whose vol-
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ume density is {e.g. [Chen 1984]):

2 2
Woe sl

2

(82)

where { ) denotes the fast-time {on scales of several plasma period) averaging. As a
consequence, a source term has to appear on the R.H. side of equation {80), ie.

n 1

— —c.An=— div fur. 83

éhfg § Ty L ( )
Since changes of electric field amplitude and ion-sound density variations are slow
in comparison with plasma frequency it is convenient to separate the instantaneous
Langmuir electric field time evolution into the fast {on plasma frequency) variations
and the slowly varying complex amplitude

1 , = ,
E{r t) = 3 E(x, t) - exp(—iwpet) + E(r, t) - exp(+iwpet) |

Using this separation and relation {82) for ponderomotive force, further omitting the
second derivative of slowly changing complex amplitude &{r, ) the equations (81)
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and {83) can be rewritten in the form {see e.g. [Zakharov 1972], [Robinson 1997]):

g 3VE m

i 2{%8&5 wﬁg?ngg (84)
Fn 2An = — A|EJ% (85)
gz =T dlmE

The relations (84, 85) are known as set of Zakharov equations and describe coherent
non-linear interactions of Langmuir and ion-sound waves.

Since Zakharov early work {[Zakharov 1972]) further generalizations of theses equa-
tions were made. The most natural one is including the electromagnetic terms into
the eq. (81) —see e.g. [Zakharov et al. 1985]. The second Zakharov equation {85)
was modified as well since in its original fluid-theory formulation was not applicable
in some {particularly short-wavelength) limit — this drawback was solved using ki-
netic approach. The Zakharov equations in their generalised or "hybrid” form can be

written as follows {[Abalde et al. 1998, [Zakharov et al. 1985]):

&” g . 5 T
((%2 + Ve + eV X V X —v,u, V(V:) + ) £ = —wpn—a
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(86)

-1 i "
n=F (kBTE-G(K,Q)-U)j
where ng and n are the electron density and slowly varying electron density fluctua-
tion respectively, £(r, #) = Eq(r, £) + E{r, t) is the total high-frequency electric field,
Eqo{r, t) is the electric field strength of the parent Langmuir wave, while E is a small
perturbation representing daughter modes; wy, 1s the electron plasma frequency, vy, 1s
the electron thermal velocity, v, is the damping frequency for electrons and -, is the
ratio of the specific heats for electrons. F~! means the inverse Fourier transform, {7
designates the Fourier transform of potential energy of the ponderomotive force and
G{K, §2) is the plasma Green function (see [Zakharov et al. 1985]).

Let us now turn to particular non-linear wave processes described by equations
(84, 85) — or their generalised version {86) — and known also as parametric instabil-
1t1es.
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Three-wave interactions Among three wave interactions belong coalescence of
two waves into the third or decay of one pump wave into two daughter modes. Gen-
erally both these processes can be schematically written as

f ff
m +m = m

where symbols m, m' and m" may be one of L, S or T for Langmuir, ion-Sound or
Transversal {electromagnetic) modes if the generalised Zakharov equations {86) are
uzed. The processes described here represent coherent — and therefore more efficient
— version of three-wave interactions discussed in the section 3.1.2. In that section
also the physical mechanism of the coalescence process was described. Explanation
of parametric decay can be seen more clearly just in its coherent variant:

Let us suppose plane Langmuir wave {for instance) propagating through plas-
mas where also plane ion-sound wave is present. The density pattern formed by the
ion-sound wave represents — according to the first Zakharov equation — a system of
semi-reflecting mirrors for the Langmuir wave. Hence, very similarly to the Bragg
reflections of X-rays in crystalline materials — but, with the Doppler shift {and/or
mode change) given by motion of density pattern — the Langmuir wave is partly re-
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flected. On the other hand, the total electric field given by the sum of both incident
and reflected waves causes by means of ponderomotive foree {82) amplification of the
ion-zound wave. Thiz amplification further leads to more efficient reflections of parent
Langmuir wave and thus the positive feedback is established. The instability grow
until non-linear effects of higher order will take place.

For use in solar coherent radio emission theory particularly following processes are
most often considered:

L L+S L'+5—=7T

or
L—-T+8S
for radiation on the [requency = w, and
L'+L =T

for the second harmonic (/= 2w,,) emission.

Modulational instabilities Unlike the three-wave processes discussed above the
modulational instability has no weak-turbulence counterpart since coherence of waves
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is essential in this process. There are four waves taking part in the instability and
physical mechanism is as follows:

Suppose plane Langmuir wave again propagating, for simplicity, in direction par-
allel to that of weak plane ion-sound wave. Due to the first Zakharov equation the
Langmuir electric field tends to concentrate near density minima of ion-sound wave.
Hence, the electric field of parent Langmuir wave becomes slightly modulated:

E*(x) = Eycos(kx) - (1 + meos(Kx))

where £ and K are Langmuir and ion-sound wave wave-numbers, respectively and
iz small parameter of order m = n/ngy describing modulational effect of density
pattern onto Langmuir wave. The essence of the instability consist in the simple
mathematical relation

cos{kx) cos{ Kx) = % (cos|(k + K)x] + cos[{k — K)z|)

indicating that side-band Langmuir waves with wave-numbers & + K and & — K
are excited as well. As in the previous case, the ponderomotive force given by the
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total electric field by all three Langmuir waves causes increase of density variations
what on the other hand makes the modulation deeper. Finally let us note, that
in case of non-parallel mutual propagation of parent Langmuir wave and ion-sound
density variation the growing side-band(s) may be radiated in the electromagnetic
mode {hybrid instability) giving such also an effective way of plasma wave conversion
into the radio radiation.
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