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Comment on the linear mirror instability near the threshold

Petr Hellinger∗

Institute of Atmospheric Physics, AS CR, Prague, Czech Republic

Linear threshold condition of the mirror instability in a homogeneous, multi-species collision-
less plasma with a general class of distribution functions is obtained in the low-frequency, long-
wavelength limit of the Vlasov-Maxwell equation. In the case of one cold species, the conditions of
the validity of the threshold condition and the behavior of the instability near threshold are also pre-
sented. It is confirmed that finite Larmor radius effects do not change the threshold condition. The
linear threshold condition is extended to the case of hot species with a general class of distribution
functions. In this case the conditions of the validity of the threshold condition or the behavior of
the instability near threshold are hard to get analytically. Previous analytical and numerical results
are discussed.

I. INTRODUCTION

Mirror instability1–3 is one of many different electro-
magnetic instabilities driven by the particle temperature
anisotropies and is relevant in collisionless, laboratory,4

space5 and astrophysical6 plasmas. A general form of the
threshold condition of the mirror instability for multi-
species, bi-Maxwellian particles in the low-frequency,
long-wavelength limit of the Vlasov-Maxwell equation
and may be given in the form7,8
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For symbol definitions see Appendix. In the approxima-
tion of one cold species (with βs⊥, βs‖ → 0) the last
term at the right hand side of (1) disappears (which cor-
responds to the vanishing parallel electric field) and the
condition reads:9
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It is noteworthy, that all the species contribute to the
condition (1) so that it covers all the special cases such
as the proton mirror and the electron mirror (or the field
swelling10) instabilities.

Shapiro & Shevchenko11 generalized the mirror thresh-
old condition for one ion species s and cold electrons as
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The same threshold condition can be obtained from an
energetic principle.12,13
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Using an adiabatic linear response of the ion distribu-
tion function (and cold electrons) and the plasma neu-
trality, Ref. 14 showed an importance of Landau reso-
nance for the mirror instability and stressed the necessity
of the kinetic treatment for the mirror instability. The
same quasi-hydrodynamic approach was used to include
hot electrons in the case of bi-Maxwellian particle dis-
tribution functions and the threshold condition (1) was
recovered.15,16 However, the predicted behaviors of the
instability near the threshold in Refs. 15 and 16 were dif-
ferent. Pokhotelov et al.17 generalized the mirror thresh-
old for general ion and electron distribution functions
using the same quasi-hydrodynamic approach.

Hasegawa9 considered Finite Larmor Radius (FLR) ef-
fects (in the approximation one cold species) and showed
that FLR effects stabilize modes with sufficiently short
wavelengths but do not change the threshold condition.
Similar results were obtained by Hall8 in the case of hot
species. On the other hand, Pokhotelov et al.18,19 revis-
ited the linear theory of the mirror instability and sug-
gested that FLR effects importantly modify the mirror
threshold condition.

In this paper we reexamine the work on the role of
FLR effects8,9 in the case of bi-Maxwellian particle dis-
tribution functions and extend this analysis to a general
class of particle distribution functions.

II. LINEAR THEORY

We assume a neutral multi-species plasma
∑
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with bi-Maxwellian distribution functions
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We suppose the background magnetic field is in the
z direction, and the wave fields vary as ei(k⊥x+k‖z−ωt).
The general form of the dispersion relation is
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where K = ω2/c2
ǫ and ǫ is the dielectric tensor;20 1

denotes the identity tensor.
In the low-frequency and long-wavelength limit,

|ω|
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the dispersion relation (6) can be factored (at least for
the threshold condition8) to
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A. One Cold Species

In the case of one cold species the term K2
yz/K̃zz is

negligible and the dispersion relation reads9

Kyy − k2 = 0. (11)

In the limit of (7) and for
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one can obtain from (11) the relation
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where ζs = ω/(
√

2k‖vs‖) and λs = k2
⊥r2

gs.
The threshold for a plasma with one ion population s

and with cold electrons is

Γs = β⊥s (As − 1) − 1 > 0 (16)

for k‖/k⊥ → 0 and k⊥ → 0
Near the threshold, 0 < Γs ≪ 1, the maximum growth

rate γm is given as
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where Πs = 1 + (βs⊥ − βs‖)/2. The maximum growth
rate appears at k⊥m and k‖m which are given as
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Note that these expressions, equations (17) and (18)
are slightly modified when compared to the original re-
sults of Ref. 9 where it is assumed P ∼ 1.

The previous results can be easily generalized to a mul-
ticomponent plasma with one cold species. In this case
the threshold (2) is given as
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Near the threshold 0 < Γ ≪ 1 the mirror dispersion is
given by
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Under the conditions Π > 0 and r̃2 > 0 the maximum
growth rate is
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and appears at k⊥m and k‖m given as
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Relations (24,25) are a simple generalization of (17,18)
and exhibit similar behavior: near the threshold the max-
imum growth rate appears at long wavelengths with re-
spect to species gyroradii.

The factorization (8,9)21 in the long-wavelength and
low-frequency limit is valid (at least for the threshold
condition8) for any distribution function in the form

fs = fs(v
2
‖ , v⊥) (26)

In this case for the approximation of one cold species
one gets a condition from (11) in the limit k‖/k⊥ → 0,

γ/k‖ → 0 in the form11
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where f̃s is defined as
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one recovers the dispersion (20) and for the conditions

Π > 0, ṽ > 0 and r̃2 > 0 (31)

the relations (24,25) with Π given by (21).

B. Hot species

In the general case of hot species the factorization (8,9)
is only applicable for the threshold condition8 and one
cannot neglect in the dispersion relation (9) the term

K2
yz/K̃zz which corresponds to the existence of the par-

allel electric field. The threshold condition may be ob-
tained as
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assuming that

k‖ ∝ Γ, k⊥ ∝ Γ1/2 and γ ∝ Γ2 (33)

where Γ is a small parameter denoting a distance from
the threshold in analogy with the case of one cold species
(24,25). In order to investigate the behavior of the mir-
ror instability near the threshold the full dispersion (6) is
necessary;8 however, this relation leads to a cubic equa-
tion in γ. Consequently, contrary to the case of one cold
species, we were not able to obtain simple relations for
the maximum growth rate and its position as well as ad-
ditional conditions for the validity of the threshold (31).

Finally, for the distribution function fs = fs(v
2
‖ , v⊥)

assuming (33) one can get the threshold condition
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which is equivalent to the general mirror threshold con-
dition derived in Ref. 17. As in the case of bi-Maxwellian
particles, relation (6) leads to a cubic equation in γ so
that we were not able to obtain simple relations for the
maximum growth rate and its position as well as addi-
tional conditions for the validity of the threshold (34).

III. DISCUSSION

For the case of one cold species the relations (24,25)
and the mirror threshold condition (27) are only valid
for (31): Π < 0 gives the threshold for the fluid fire hose
instabilities3 (however, the full kinetic treatment predicts
two different fire hose instabilities5 which have generally
lower thresholds); ṽ < 0 may lead to another type of
instability17,19 and r̃2 < 0 may destabilize the mirror
mode even for Γ < 0 below (27).

Recently Refs. 18,19 suggested that the mirror max-
imum growth rate appears for k⊥rgs ∼ 1 and that the
threshold conditions is largely modified by the FLR ef-
fects. However, the approximation used in Ref. 18,19 (as
well as in this paper) is only valid at the low-frequency,
long-wavelength limit k⊥rgs ≪ 1. It is straightforward to
show22 that the threshold calculated from equation (25)
in Ref. 18 is identical to (16) and that near the threshold
the behavior of the maximum grow rate and its position
is identical to (17,18).

In the case of hot species, contrary to our results, Hall8

obtained analytically the behavior of the mirror instabil-
ity near the threshold. However, his results were derived
under some simplifying assumptions and moreover he as-
sumed k‖ ∝ Γ, k⊥ ∝ Γ and γ ∝ Γ which gives a different
term ordering when compared to our results where (33)
is used in analogy with the case of one cold species. On
the other hand, the numerical solution of the full kinetic
dispersion of the mirror instability23,24 gives results qual-
itatively similar to the analytical results.8,9 We were not
able to obtain analytically additional conditions for the
validity of the threshold conditions (32,34). On the other
hand, in some cases the results of the full kinetic treat-
ment (6) are in a good agreement with the analytical
threshold condition (32).25

The quasi-magnetohydrodynamic approach15–17 is
largely compatible with the factorization (9) so that its
predictions of the behavior of the mirror instability in the
hot species case may be questionable.

IV. CONCLUSION

We have presented the linear threshold condition (27)
for the mirror instability in the homogeneous, multi-
species plasma with a general class of distribution func-
tions (26) in the case of one cold species from the low-
frequency, long-wave length limit of the linear Vlasov-
Maxwell equations. We have presented the conditions
(31) of the validity of the threshold condition (27) as
well as the behavior of the maximum growth rate and its
position near the threshold in this case (24,25) as a gen-
eralization of the previous results.9 The linear threshold
condition is not modified by FLR effects in agreement
with Hasegawa9 as well as with the reexamined results
of Pokhotelov et al.18

Furthermore, we have derived the threshold condition
(34) for the mirror instability in the homogeneous, multi-



4

species with a general class of distribution functions (26)
in the case hot species using the same approach. This
condition is in agreement with the previous results.7,8,17

In this case we were not able to derive analytically the
conditions of validity of the threshold condition or the
behavior of the instability near the threshold. Although
such analytic analysis could be done under some simplify-
ing assumptions,8 we conclude that in a general case of a
plasma with hot species it is advisable to use the full dis-
persion relation (6) of Vlasov-Maxwell equation.23,24 We
expect that these results are also relevant for the (drift)
mirror instability in inhomogeneous plasmas.

APPENDIX: DEFINITIONS

We use the subscripts ⊥ and ‖ to denote the direc-
tions with respect to the ambient magnetic field B0 with
B0 = |B0| denoting its magnitude; the subscript s de-
notes different species. Here fs denotes the distribution
functions, ns =

∫

fsdv is the number density and Ts⊥ =
ms

∫

v2
⊥fsdv/(2nskB) and Ts‖ = ms

∫

v2
‖fsdv/(nskB)

are the (effective) perpendicular and parallel tempera-
tures, respectively, and we define As = Ts⊥/Ts‖. Here

pB = B2
0/2µ0 denotes the magnetic pressure and we

define the particle betas as βs‖ = nskBTs‖/pB, βs⊥ =
nskBTs⊥/pB, and the total betas as β⊥ =

∑

s βs⊥,
β‖ =

∑

s βs‖. Here the thermal velocities are defined

as vs‖ = (kBTs‖/ms)
1/2 and vs⊥ = (kBTs⊥/ms)

1/2. The
cyclotron frequency are and ωcs = qsB0/ms, respectively,
the electron plasma frequency is ωps = (nsq

2
s/msǫ0)

1/2.
The gyroradius is given as rgs = v⊥s/ωcs. In these ex-
pressions: ms denote the mass, qs denotes the charge,
and ρs = qsns is the charge density. Here µ0 and ǫ0
stand for the vacuum magnetic permeability and elec-
tric permittivity, respectively, and kB is Boltzmann con-
stant. ω denotes the (complex) wave frequency, γ de-
notes the growth/damping rate, k denotes the wave vec-
tor, k = (k⊥, 0, k‖) whereas γm denotes the maximum
growth rate and k⊥m and k‖m denote the corresponding
wave vector components. Here ǫ denotes the dispersion
tensor, K = ω2/c2

ǫ, and 1 denotes the identity tensor;
Z and Z ′ denote the plasma dispersion function and its
derivative, respectively.
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