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Oblique electron fire hose instability: Particle-in-cell simulations

Petr Hellinger,1 Pavel M. Trávńıček,2,1 Victor K. Decyk,3 and David Schriver4,3

Abstract. Nonlinear properties of the oblique resonant electron fire hose instability are in-
vestigated using two-dimensional particle-in-cell simulations in the Darwin approximation for
weak initial growth rates. The weak electron fire hose instability has a self-destructive non-
linear behavior; it destabilizes a non-propagating branch which only exists for a sufficiently
strong temperature anisotropy. The nonlinear evolution leads to generation of non-propagating
waves which in turn scatter electrons and reduce their temperature anisotropy. As the temper-
ature anisotropy is being reduced, the non-propagating branch disappears and the generated
standing waves are transformed to propagating whistler waves which are rapidly damped. Con-
sequently, the oblique electron fire hose efficiently reduces the electron temperature anisotropy.

1. Introduction

Solar wind electrons exhibit important nonthermal features in-
cluding multiple populations drifting with respect to each other
and temperature anisotropies, even though they are relatively
strongly coupled through Coulomb collisions [Phillips et al., 1989;
Phillips and Gosling, 1990; Salem et al., 2003]. The temperature
anisotropies are a source of free energy for many different instabil-
ities [Gary, 1993]. For the temperature anisotropy T‖e > T⊥e

(for symbol definitions see Appendix) the dominant instability
(for moderately magnetized plasmas) is the oblique resonant non-
propagating electron fire hose [Li and Habbal, 2000; Gary and
Nishimura, 2003]. Competing nonresonant/propagating fire hose
modes [Hollweg and Völk, 1970; Paesold and Benz, 1999, 2003]
have typically lower growth rates and higher thresholds close to
the fluid one [Gary and Nishimura, 2003]. Other competing insta-
bilities such as the Weibel instability [Lazar and Poedts, 2009; Ib-
scher et al., 2012; Lazar et al., 2013] may reach much larger growth
rates, but typically have a much higher threshold than the oblique
fire hose instability (except in very high beta/unmagnetized plas-
mas). The oblique electron fire hose destabilizes non-propagating
oblique modes which appear as a result of branch change from the
propagating whistler waves. The most unstable mode appears at
oblique angles (with respect to the ambient magnetic field) and
at electron inertial scales; the angle of propagation decreases and
wavelength increases when approaching the threshold [Campore-
ale and Burgess, 2008]. This instability is resonant with electrons
(through both the standard and anomalous cyclotron resonances)
and is unstable even for β‖e − β⊥e < 2, i.e., below the fluid fire
hose threshold.

In situ observations indicate a presence of bounds on the tem-
perature anisotropy of the electron core and halo populations.
These bounds are compatible with linear predictions for the domi-
nant oblique resonant fire hose calculated for a single electron bi-
Maxwellian velocity distribution function [Štverák et al., 2008]. In
order to understand the role of this instability in the solar wind, its
nonlinear properties need to be considered. The nonlinear proper-
ties of the oblique electron fire hose instability are not well under-
stood. Only a small number of simulations of electron fire hose
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instabilities have been performed to date. Messmer [2002] and
Paesold and Benz [2003] investigated the nonresonant fire hose in-
stability, but only for parallel propagation.

Gary and Nishimura [2003] studied the oblique resonant fire
hose instability in strongly unstable cases (with initial conditions
well above the fluid threshold which leads to large growth rates
∼ 0.2ωce) using one-dimensional (1-D) explicit particle-in-cell
(PIC) simulations with a relatively small box (with a size four times
the wavelength of the fastest growing mode). Gary and Nishimura
[2003] terminated their simulations shortly after the saturation, i.e.,
shortly after fluctuating magnetic energy reached the maximum. At
that time the states of the 1-D simulations were near the theoretical
marginal stability. Gary and Nishimura [2003] reported only the
presence of non-propagating modes in their simulations.

Camporeale and Burgess [2008] used 1-D and two-dimensional
(2-D) implicit PIC simulations of strong fire hose instabilities (γ &
0.25ωce) using small simulation boxes (chosen so that two and four
wavelengths of the fastest growing mode fit into the box in 2-D
and 1-D cases, respectively). Camporeale and Burgess [2008] ob-
served a complex evolution of the simulated system. The gener-
ated wave activity shifts during the nonlinear evolution to smaller
propagation angles and larger wavelengths in agreement with the
linear prediction. This property indicates that at least a 2-D sim-
ulation for electron fire hose instability is needed. The generated
waves become eventually damped and the system exhibits oscilla-
tions around marginal stability. Beside the non-propagating modes,
Camporeale and Burgess [2008] also observed the generation of
propagating modes which they attribute to the competing propagat-
ing branch as they are also linearly destabilized. Such a behavior
was not observed by Gary and Nishimura [2003] likely due to the
limitations of the 1-D geometry and the short duration.

These previous simulations were limited by small simulation
box sizes; since only a few unstable modes were allowed within
the simulation box size, this may have an important effect on the
nonlinear evolution and quasi-linear effects are also likely to be re-
duced. Also, the use of strong initial growth rates are not very rele-
vant in the solar wind where the electron temperature anisotropy is
only slowly driven [cf. Phillips and Gosling, 1990]. Furthermore,
starting in a region where both non-propagating and propagating
modes are unstable complicates the analysis and interpretation of
the simulation results. To overcome the limitations of the previous
simulation results we investigate in this paper nonlinear properties
of the resonant non-propagating oblique electron fire hose using
explicit 2-D PIC code in the Darwin approximation for relatively
weak growth rates and a large simulation box with respect to the
fastest growing mode. This paper is organized as follows: sec-
tion 2 briefly summarizes linear theory predictions, section 3 de-
scribes the numerical code and simulation results. In section 4 we
discuss the presented results.

2. Linear theory
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The linear dispersion of the whistler mode becomes complicated
when electrons exhibit a temperature anisotropy Te‖ > Te⊥. For
a large enough temperature anisotropy, non-propagating modes ap-
pear due to a branch change from the propagating whistler mode.
The non-propagating modes may become unstable for a sufficiently
strong electron temperature anisotropy [Li and Habbal, 2000];
This instability is called here oblique (resonant) electron fire hose.
For stronger temperature anisotropies propagating modes also be-
come unstable [Li and Habbal, 2000; Camporeale and Burgess,
2008]. An example of the whistler/fire hose dispersion behavior
for weak growth rates is shown in Figure 1. Figure 1 displays
a dispersion relation ωr = ωr(k) (solid line) and γ = γ(k)
(dashed line) for the parallel propagation θkB = 0o (left panel)
and θkB = 64o (right panel); the plasma is assumed to consist
of anisotropic electrons and isotropic protons with the following
parameters: the parallel electron beta β‖e = 2, the temperature
anisotropy T⊥e/T‖e = 0.216; the frequency ratio is ωpe/ωce = 4,
and the proton temperature is Tp = T‖e. In the case of paral-
lel propagation the real frequency ωr is not a monotonic function
of the wave vector k. There exists a local maximum and the ωr

crosses zero and becomes negative. For oblique propagation the
real frequency ωr , becomes zero for a wide range of wave vec-
tors, and a part of this branch is unstable (in this case the propa-
gating modes are stable). The branch change from the propagating
whistler waves to non-propagating modes also alters the polariza-
tion; while the propagating whistler waves have a circular/elliptical
polarization the non-propagating branch has a linear Alfvénic po-
larization (i.e., the fluctuating magnetic field is perpendicular with
respect to both the ambient magnetic field and the wave vector).
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Figure 1. Dispersion relation of the whistler mode: The real fre-
quency ωr = ωr(k) (solid line) and the growth rate γ = γ(k)
(dashed line) for the parallel propagation θkB = 0o (left panel)
and for θkB = 64o (right panel).

These dispersive properties of the electron oblique resonant fire
hose instability are similar to those of the proton oblique resonant
fire hose instability [cf., Hellinger and Matsumoto, 2000]. There-
fore, we expect that the two instabilities have a similar nonlinear
evolution.

3. Numerical simulations

3.1. Simulation model and parameters

To investigate nonlinear properties of the electron fire hose insta-
bility we use a 2-D version of an explicit electromagnetic PIC code
that employs the Darwin approximation [Decyk, 2007],schral10.
The Darwin PIC model neglects the transverse component of the
displacement current (but keeps the longitudinal part) in the full
set of Maxwell’s equations, which makes them radiation-free, but
leaves the whistler physics unaffected from its fully electromag-
netic counterpart [Hewett, 1985]; namely, the electric field is sepa-
rated into transverse and longitudinal components

E = ET + EL (1)

where ∇×EL = 0 and ∇ ·ET = 0 and the Maxwell equations
are modified as

∇ ·EL =
ρ

ε0
, ∇×ET = −∂B

∂t
(2)

∇ ·B = 0, ∇×B =
1

c2
∂EL

∂t
+ µ0j. (3)

The radiation-free Darwin approximation removes the demand-
ing Courant-Friedrich-Levy condition for a time step given by the
speed of light (and the size of the grid used) [Schriver et al., 2010].
Consequently, the time step is set by the greater of the electron
plasma frequency or the electron cyclotron frequency.

Here we use the real mass ratio mp/me = 1836 and for the
frequency ratio we use ωpe/ωce = 4. The electrons have initially
β‖e = 2 and T⊥e/T‖e = 0.216 whereas the protons are initially
isotropic with Tp = T‖e. The simulation box is chosen to be a
2-D grid 2048× 1024 with the physical sizes 512de × 256de. The
magnetic field is chosen to be along the x-direction. The paral-
lel (x) and perpendicular (y) simulation box sizes are about 28
times the scales 2π/k‖max and 2π/k⊥max of the fastest growing
mode, respectively. There are 1024 macroparticles per cell for elec-
trons and 512 macroparticles per cell for protons. The time step is
∆t = 0.025ω−1

ce .

3.2. Simulation results

The initial condition β‖e = 2 and T⊥e/T‖e = 0.216 are unsta-
ble with respect to the oblique fire hose instability (see Figure 3)
with the maximum growth rate γmax = 0.05ωce which appears at
kmax = 0.778/de and θkBmax = 64.1o. The unstable electron dis-
tribution function generates non-propagating waves which in turn
scatter electrons. The time evolution of the electron macroscopic
properties are show in Figure 2.

Figure 2 shows in the top and middle panels the electron tem-
perature anisotropy T⊥e/T‖e and the electron parallel beta β‖e as
functions of time. The temperature anisotropy decreases with time
(T⊥e/T‖e increases) and the β‖e decreases. A part of the paral-
lel electron kinetic energy is transfered to the perpendicular kinetic
energy and to the wave energy. In the bottom panel of Figure 2 the
solid line shows the evolution of the maximum growth rate of the
fire hose instability calculated from the evolving velocity distribu-
tion function; the electron velocity distribution function is calcu-
lated on a 2-D velocity grid 512× 512 for −5vth‖e ≤ v‖ ≤ vth‖e
and 0 ≤ v⊥ ≤ vth‖e and is used for the calculation of the disper-
sion relation detD = 0 where

D =

1− k2c2

ω2
−

∑
s∈{p,e}

ω2
ps

ω2

1 +
kkc2

ω2
(4)

−
∑

s∈{p,e}

ω2
ps

ω2

∞∑
n=−∞

∫ k‖
∂fs
∂v‖

+ nωcs
v⊥

∂fs
∂v⊥

k‖v‖ − ω + nωcs
wsnwsnd3v

and

wsn =

(
nJn

ωcs

k⊥
, iJ ′nv⊥, Jnv‖

)
. (5)

Protons are assumed to be Maxwellian and the discrete electron
velocity distribution is used; the integration over the electron ve-
locity distribution is replaced by a summation over the velocity
grid, and the summation over resonances for electrons goes from
n = −20 to n = 20 [cf., Hellinger and Trávnı́ček, 2011, for
more details]. For comparison the dashed line denotes the max-
imum growth rate calculated from the temperatures assuming that
the electron velocity distribution remains bi-Maxwellian. The max-
imum growth rate (calculated from the velocity distribution func-
tion) first remains close to the initial value 0.05ωce, then it some-
what surprisingly temporarily increases and reaches the maximum
value 0.069ωce at t = 114/ωce and after that the maximum growth
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rate decreases. The transient increase of the maximum growth rate

may be a problem of the discrete approximation; however, the elec-

tron velocity distribution function varies only weakly on scales

much larger than the grid resolution and the initial results from

the discrete solver are in a good agreement the linear prediction

for the electron bi-Maxwellian velocity distribution function. The

system becomes linearly stabilized at around t = 220/ωce. The

bi-Maxwellian maximum growth rate initially follows closely the

maximum growth rate obtained from the distribution function but

later decreases faster and reaches zero around 170/ωce.

The sharp decrease of the maximum growth rate calculated from

the velocity distribution function at around t = 220/ωce likely in-

dicates a problem with the calculation of the dispersion relation

based on the discrete distribution function, but it may be just a sig-

nature of some fast transition in the system.
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Figure 2. Time evolution of the simulated system: (top) the
electron temperature anisotropy, (middle) the electron parallel
beta as a function of time and (bottom) the maximum growth
rate of the fire hose instability calculated from the electron ve-
locity distribution function (solid) and calculated from the mo-
ments assuming a bi-Maxwellian shape (dashed).

The linear predictions at the beginning of the simulation and at

the time when the maximum growth rate is the largest (as shown

in Figure 2, solid line) are displayed in Figure 3. Figure 3 shows

a gray scale plot of the growth rate as a function of the wave vec-

tor k and the angle of propagation θkB , t = 0 (left panel) and

t = 114/ωce (right panel). The results on the left panel were calcu-

lated for bi-Maxwellian electrons whereas on the right panel the re-

sults were calculated from the actual velocity distribution function.

The unstable regions in both the cases follows roughly constant

k‖ and the unstable modes are non-propagating. The maximum

growth rate at t = 0 appears at kmax = 0.778/de and θkBmax =

64.1o and reaches the value of 0.05ωce, whereas at t = 114/ωce

the maximum growth rate is 0.069ωce for kmax = 0.843/de and

θkBmax = 61.9o At t = 114/ωce the maximum growth rate is

larger than at the beginning, but the unstable region is narrower in
wavenumber and propagation angle range.
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Figure 3. Gray scale plots of the growth rate as a function of
the wave vector k and the angle of propagation θkB at t = 0
(left panel) and t = 114/ωce (right panel). The growth rate
gray scale is shown at the right.

The time evolution of the wave energy is shown in Figure 4. Fig-
ure 4 shows in the top panel the fluctuating magnetic field δB2/B2

0

(solid line) as a function of time; (for comparison the energy in
the Alvénic component of the fluctuating magnetic field δB2

z/B
2
0

is overplotted by the dashed line). The middle and bottom panels
display gray scale plots of the fluctuating magnetic field δB as a
function of time and wave vector k and as a function of time and
propagation angle θkB , respectively. The solid lines on the middle
and bottom panels show the linear prediction, the position of the
most unstable mode calculated from the evolving (discrete) elec-
tron velocity distribution function (see Figure 2); the dashed lines
denote the linear prediction based on the bi-Maxwellian velocity
distribution function.

Figure 4 shows that the electron fire hose generates essentially
Alvénic fluctuations in agreement with the linear prediction. The
unstable modes appear at short wavelengths k ∼ 0.7/de and
strongly oblique propagation angles θkB ∼ 60o. During the evolu-
tion the fluctuating fields shift towards less oblique angles in agree-
ment with the linear prediction which shows that the most unsta-
ble mode moves to less oblique angles (whereas the wave vectors
remain at about the same magnitude or slightly decrease); the bi-
Maxwellian results predict smaller wave vectors and a stabiliza-
tion appears well before the saturation/maximum of δB2/B2

0 . The
shift of the fluctuating magnetic energy to less oblique angles is to
a large extent due to quasi-linear effects as expected from the lin-
ear prediction [Camporeale and Burgess, 2008]. The rapid change
of the wave vector and the propagation angle of the most unstable
mode at t ∼ 220/ωce (related to the fast stabilization) likely indi-
cates problems with the discrete linear dispersion or may be related
to a fast change of the dispersion relation.

The fluctuating magnetic field δB2/B2
0 initally grows exponen-

tially as ∝ exp(0.098tωce), i.e., slightly slower than what is ex-
pected for the most unstable mode (as other, slower growing modes
contribute to it). The fluctuating δB2/B2

0 reaches its maximum at
around 200/ωce shortly before the fire hose instability is stabilized
(as predicted by the linear analysis based on the evolving electron
velocity distribution function, see Figure 2, solid line). During the
later evolution most of the initially generated fluctuating wave en-
ergy is damped and contributes to perpendicular electron heating
(see Figure 2). Some waves appear at parallel propagation proba-
bly due to wave-wave interactions.
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Figure 4. Evolution of the wave spectra: (top) Fluctuating mag-
netic field δB2/B2

0 (solid line) as a function of time; for com-
parison δB2

z/B
2
0 is overplotted (dashed line). Gray scale plots

of the fluctuating magnetic field δB as a function of time and
wave vector k (middle panel) and as a function of time and prop-
agation angle θkB (bottom panel). The solid lines on the middle
and bottom panels show the linear prediction, the position of
the most unstable mode calculated from the evolving velocity
distribution function, whereas the dashed lines show the linear
prediction assuming the electron velocity distribution function
remains bi-Maxwellian (see Figure 2).

The properties of the fluctuating magnetic field are shown in
Figure 5. Figure 5 displays a gray scale plot of the absolute value
of the dominant Alfvénic component |Bz| as a function of time
and distance l (which was taken through a part of the simulation
box along a cut at 45o with respect to the ambient magnetic field).
Figure 5 clearly shows that initially the oblique fire hose instabil-
ity generates standing modes predicted by the linear theory. The
non-propagating waves gradually transform themselves to propa-
gating ones and are damped. This may be expected as the non-
propagating modes exist only for sufficiently strong temperature
anisotropy which is being reduced by the instability (this is an evo-
lution similar to that observed in the case of the oblique proton fire
hose instability [Hellinger and Matsumoto, 2000]).
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Figure 5. Gray scale plot of the (absolute value of the) domi-
nant component of the magnetic field |Bz| as a function of time
and distance l (along a cut through a part of the simulation box
at 45o with respect to the ambient magnetic field).

On the macroscopic level the wave-particle interactions due to
the instability lead to an effective temperature isotropization. This

isotropization may be characterized by a frequency νT given by

d(T‖e − T⊥e)

dt
= −νT (T‖e − T⊥e). (6)

Figure 6 displays on the top panel this isotropization frequency

νT as a function of time; νT reaches a maximum value of about

νT ∼ 0.004ωce and is roughly proportional to δB2/B2
0 as

νT ∼ 0.24
δB2

B2
0

ωce (7)

(see Figure 4).

Protons are only weakly affected by the electron fire hose in-

stability. Figure 6 (middle and bottom panel) shows the relative

changes of the parallel and perpendicular proton temperatures and

functions of time. Protons are only slightly heated during the decay

phase t & 150/ωce, the relative increase of T‖p is about 2.5 · 10−4

whereas the relative increase of T⊥p is about 2.0 ·10−4. This weak

proton heating is not surprising. The wave activity appears on

short spatial and temporal scales, and, while the non-propagating

modes resonate with protons with v‖ ∼ 0 trough the cyclotron res-

onances, these resonances shift to velocities much larger than the

proton thermal velocity for the propagating modes.
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Figure 6. Evolution of the simulated system: (top) the
isotropization frequency νT as a function of time. The mid-
dle and bottom panels show the relative changes of the proton
parallel and perpendicular temperatures as functions of time.

On the microscopic level the generated waves interact with

mainly (cyclotron) resonant electrons and scatter them in the per-

pendicular direction. Figure 7 shows gray scale plots of the elec-

tron velocity distribution functions at (left) t = 200ω−1
ce and (right)

t = 600ω−1
ce . There are clear signatures of the perpendicular scat-

tering for the resonant electrons with v‖ ∼ vth‖e.
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Figure 7. Gray scale plots of the electron velocity distribution
functions at (left) t = 200ω−1

ce and (right) t = 600ω−1
ce .

The self-destructing behavior leads to an efficient isotropization

of electrons and the final stage of the instability is stable with re-

spect to the instability. The system does not end up at the marginal

stability. This property is clearly demonstrated in Figure 8 which

show paths in (β‖e, T⊥e/T‖e) by the solid lines for the present

simulation with the starting point (β‖e = 2, T⊥e/T‖e = 0.216)

compared to two other simulations with similar parameters starting

at (β‖e = 4, T⊥e/T‖e = 0.536) and (β‖e = 8, T⊥e/T‖e = 0.722).

The full and empty circles show the initial and final stages, respec-

tively, and the dotted lines denote the corresponding constant elec-

tron energy/temperature contours. The dashed labeled lines denote

contours of the constant maximum growth rates (given in units of

ωce). The dash-dotted line denotes the fluid fire hose threshold con-

dition β‖e − β⊥e = 2. Figure 8 clear shows that the oblique elec-

tron instability has a threshold lower than the fluid prediction. The

marginal stability condition γmax = 10−3ωce can be approximated

(for 1.4 < β‖e < 10) by the relation

T⊥e/T‖e = 1− 1.27

β0.954
‖e

(8)

[cf., Gary and Nishimura, 2003]. The three simulations have

an overall similar evolution leading to relatively large jumps in

the (β‖e, T⊥e/T‖e) space from the unstable to the stable regions

roughly following the constant electron temperature contours; dur-

ing the evolution electrons lose some of their kinetic energy which

they regain at later stages, having about the same kinetic energy

at the beginning and at the end of the simulations. The simula-

tion with the initial conditions (β‖e = 8, T⊥e/T‖e = 0.722) starts

slightly above the fluid fire hose threshold, but we do not observe
any significant propagating wave activity during the initial phase.
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Figure 8. The solid lines denote paths in the (β‖e, T⊥e/T‖e)
plane for three simulations starting at β‖e = 2, T⊥e/T‖e =
0.216, β‖e = 4, T⊥e/T‖e = 0.536, and β‖e = 8, T⊥e/T‖e =
0.722. The solid circles shows the initial stages whereas the
empty circles show the final ones. The dotted lines denote
the corresponding constant electron kinetic energy/temperature
contours. The dashed labeled lines denote contours of the
constant maximum growth rates (given in units of ωce). The
dash-dotted line denotes the fluid fire hose threshold condition
β‖e − β⊥e = 2.

4. Discussion

Results of the 2-D Darwin PIC code show that a relatively weak
oblique resonant electron fire hose instability has a self-destructive
nonlinear behavior similar to its proton counterpart [Hellinger and
Matsumoto, 2000]; it has even less complicated evolution com-
pared to the oblique proton fire hose since it has no competing insta-
bility [Hellinger and Matsumoto, 2001], which appear for stronger
initial growth rates [Camporeale and Burgess, 2008]. The weak
oblique fire hose destabilizes a non-propagating branch which only
exists for a sufficiently strong temperature anisotropy. The insta-
bility generates waves which in turn scatter (mainly the resonant)
electrons and reduce their temperature anisotropy; as the temper-
ature anisotropy is being reduced the non-propagating modes dis-
appear and the waves are transformed to propagating modes which
are rapidly damped. This is not a standard quasi-linear behavior
but can be to some extent interpreted as a quasi-linear evolution
modified by a mode conversion (and, in later stages, by wave-wave
interactions). The electron oblique fire hose only weakly interacts
with protons which are only weakly heated; the relative change of
the proton thermal energy is of the order of 10−4.

For numerical reasons we used for the PIC simulations the fre-
quency ratio ωpe/ωce = 4, which is much smaller then typical val-
ues in the solar wind. However, as the fire hose instability generates
transverse waves with frequencies much smaller than ωce, we ex-
pect that this instability will have the same evolution for larger val-
ues of ωpe/ωce. We used (again for numerical reasons) initial con-
ditions with the maximum growth rate γmax = 5 · 10−2ωce, which
are relatively weak but probably too strong for the solar wind as
the electron temperature anisotropy is only slowly driven [cf. Landi
et al., 2012] and the instability needs to be just fast enough to coun-
teract the anisotropy driver [cf., Matteini et al., 2006; Hellinger
and Trávnı́ček, 2008]. We expect that for weaker growth rates the
oblique electron fire hose instability has the same self-destructive
evolution with (likely smaller) jumps from unstable to stable re-
gion.
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The simulation results of Gary and Nishimura [2003] were
limited by the short duration as they terminated the simulations
shortly after saturation and they only reported the presence of non-
propagating modes. We expect that they would get similar results,
a large reduction of the fluctuating magnetic energy after the satu-
ration and the final state would be in the stable region, far from the
marginal stability; their simulations are, however, still constricted
by a small simulation box which allows only a limited number of
unstable modes. The simulation results of Camporeale and Burgess
[2008] exhibit an evolution similar to what we observe. After the
saturation the fluctuating magnetic energy is strongly reduced and
the wave activity shifts during the nonlinear evolution to larger
wavelengths and angles. Camporeale and Burgess [2008] also ob-
serve propagating modes which they attribute to the propagating
fire hose branch which is destabilized in their cases of strong in-
stability. Our results suggest that some of the propagating mode
activity may be due to the branch change. In contrast with our
results the simulations of Camporeale and Burgess [2008] exhibit
oscillations around the marginal stability, which may be a result of
small simulation boxes, strong initial growth rates and the presence
of unstable competing propagating modes.

The results presented here are relevant for solar wind electrons.
However, the electron velocity distribution functions have typi-
cally a more complicated form consisting of multiple populations
[Štverák et al., 2009], which influence the linear stability of the
system and introduce other sources of free energy for kinetic insta-
bilities. These problems will be subject of future work.

Glossary

Here subscripts ⊥ and ‖ denote the perpendicular and par-
allel directions with respect to the ambient magnetic field B0,
B0 = |B0| denotes its the magnitude. Here E denotes the electric
field, v denotes a velocity, v = |v| being its magnitude, and v‖ and
v⊥ denote the magnitudes of the velocity components parallel and
perpendicular to B0, respectively; t denotes the time, δB denotes
the fluctuating magnetic field δB = B−B0, δB is its magnitude.
Here subscripts e and p denote electrons and protons, respectively,
subscript 0 denotes initial values. Here ne denotes the electron
number density, T‖e and T⊥e denote the parallel and perpendic-
ular electron temperatures, respectively, Te = (2T⊥e + T‖e)/3
is the mean electron temperature and vth‖e = (kBT‖e/me)

1/2

is the electron parallel thermal velocity. Here T‖p and T⊥p de-
note the parallel and perpendicular electron temperatures, respec-
tively, Tp = (2T⊥p + T‖p)/3 is the mean electron tempera-
ture. Here β‖e = 2µ0nekBT‖e/B

2
0 is the electron parallel beta,

ωce = eB0/me and ωpe = (nee
2/meε0)1/2 denote the electron

cyclotron and plasma frequencies, respectively, and de = c/ωpe

is the electron inertial length. In these expressions me denotes the
electron mass, kB is the Boltzmann constant, e denotes the proton
charge, ε0 and µ0 denote the vacuum electric permittivity and mag-
netic permeability, respectively, and c denotes the speed of light.
Here, k denotes the wave vector, k its magnitude, k‖ and k⊥ its
parallel and perpendicular components, respectively, θkB denotes
the angle between k and the ambient magnetic field. Here ρ is the
charge density and j is the electric current density.

Acknowledgments. PH and PMT acknowledge the grant P209/12/2041
of the Grant Agency of the Czech Republic. DS acknowledges support from
National Science Foundation (NSF) Geospace Environmental Modeling
(GEM) grant 1203739. The research leading to these results has received
funding from the European Commission’s Seventh Framework Programme
(FP7) under the grant agreement SHOCK (project number 284515, project-
shock.eu). This work was also supported by the projects RVO:67985815
and RVO:68378289.

References

Camporeale, E., and D. Burgess (2008), Electron firehose instability: ki-
netic linear theory and 2D particle-in-cell simulations, J. Geophys. Res.,
113, A07107, doi:10.1029/2008JA013043.

Decyk, V. K. (2007), UPIC: A framework for massively parallel particle-in-
cell codes, Computer Phys. Comm., 177, 95–97.

Gary, S. P. (1993), Theory of Space Plasma Microinstabilities, Cambridge
Univ. Press, New York.

Gary, S. P., and K. Nishimura (2003), Resonant electron firehose instability:
Particle-in-cell simulations, Phys. Plasmas, 10, 3571–3576.

Hellinger, P., and H. Matsumoto (2000), New kinetic instability: Oblique
Alfvén fire hose, J. Geophys. Res., 105, 10,519–10,526.

Hellinger, P., and H. Matsumoto (2001), Nonlinear competition between the
whistler and Alfvén fire hoses, J. Geophys. Res., 106, 13,215–13,218.
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and E. E. Scime (2009), Radial evolution of nonthermal electron popu-
lations in the low-latitude solar wind: Helios, Cluster, and Ulysses ob-
servations, J. Geophys. Res., 114, A05104, doi:10.1029/2008JA013883.

P. Hellinger, Astronomical Institute, AS CR, Bocni II/1401, Prague
14100, Czech Republic. (petr.hellinger@asu.cas.cz)
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