
Excitation of waves at 2ωpe and back-propagating waves at
ωpe: a parametric study
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Abstract. We present a parametric study of electrostatic
waves generated with angular frequencies 2ωpe and −ωpe

by an electron beam using a one-dimensional Vlasov code.
We consider a background plasma consisting of three compo-
nents: two electron populations (a background and a beam)
and a proton population (with a mass ratio mp/me = 400
and temperatures Tp = Te = T ). We investigate the influ-
ence of different beam parameters on the nonlinear growth
rate of waves with angular frequency 2ωpe and compare the
results of the numerical experiments to theoretical predic-
tions. We also examine the presence and excitation of back-
propagating waves with angular frequency ωpe. A discus-
sion on the possible generating mechanisms of the different
modes observed in these simulations is also presented.

1 Introduction

The excitation of waves by an electron beam injected into
a collisionless plasma has been the subject of several theo-
retical and numerical studies. Electron beams are a natural
source of electrostatic Langmuir waves at the plasma fun-
damental frequency fpe. However, waves at 2fpe are of-
ten observed in the vicinity of the terrestrial electron fore-
shock region (e.g. Kasaba et al. (2001)); these 2fpe emis-
sions are electromagnetic in nature, whose origin and gener-
ating mechanism are not yet well understood. These elec-
tromagnetic waves could be connected with the nonlinear
electrostatic waves at 2fpe, usually observed in numerical
simulations of plasma-electron beam systems. Electrostatic
harmonics of the plasma fundamental frequency have been
observed at the very begining of numerical studies (Klimas,
1983). Recently, Yoon (2000) has published a self-consistent
theoretical work on weak turbulence, assuming higher order
terms in the perturbation expansion of the Vlasov-Poisson
system of equations. Yoon’s theory predicts the existence of
a nonlinear electrostatic mode, with a growth rate depending
on the energy of the Langmuir waves and on the properties of
the electron distribution function. The electromagnetic 2fpe

waves could be the result of a mode conversion from purely
electrostatic waves (Yoon et al., 1994).

On the other hand, Kasaba et al. (2001) have shown, using
two dimensional particle in cell (PIC) simulations, that Lang-
muir waves interact with back-propagating (with respect to
the electron beam) Langmuir waves (Ginzburg and Zheleznyakov,
1958; Dum, 1990). Their interaction naturally generates elec-
tromagnetic waves at about 2fpe (Cairns and Melrose, 1985).

The back-propagating mode with angular frequency ωpe

(hence forth we denote this mode −ωpe) has been discussed
by Tsytovich (1970), and later, for example, by Dum (1990).
Dum (1990) examined the appearance of back-propagating
Langmuir waves in a numerical model containing a mobile
proton species. This work noted that waves scattering off
ions are much more efficient than waves scattering off of
electrons.

In this paper we obtain a quantitative description of the
generation of 2ωpe and −ωpe electrostatic waves using a set
of Vlasov simulations. The two modes have different prop-
erties and generating mechanisms, and, therefore, it is likely
that their amplitudes vary differently with plasma parame-
ters. We consider a background plasma consisting of two
species: an electron population and a proton population, with
an artifical mass ratio mp/me = 400, and we assume equal
temperatures of the proton and electron distribution func-
tions, Tp = Te = T . The third component present in our
model is an electron beam with variable initial parameters.
We compare the results of our numerical experiments for
2ωpe waves with the theoretical predictions of Yoon’s theory
(Yoon, 2000; Ziebell et al., 2001; Gaelzer et al., 2002). In
addition, we briefly discuss the growth rate of −ωpe waves.

2 The numerical model

In order to simulate the interaction of an electron beam and
a plasma we use the second order numerical scheme for the
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Vlasov-Poisson system of equations :
(

∂

∂t
+ v · ∇ +

ea

ma

E(r, t) ·
∂

∂v

)

fa(r,v, t) = 0,

∇ · E(r, t) =
n

ε0

∑

a

ea

∫

dv fa(r,v, t),
(1)

where fa denotes the distribution function of a given species
a (a = e for electrons, a = p for protons), defined in two
dimensional phase space S = S(x, vx). n = ne = np de-
notes the ambient plasma density, and E represents the self-
consistent electrostatic field. We use a standard numerical
scheme to resolve the Vlasov-Poisson system: For the in-
tegration of the Poisson equation we use a finite difference
scheme, the time advance scheme of the Vlasov equation is
based on a splitting algorithm first introduced by Cheng and
Knorr (1976) and an upwind discretisation (Leer, 1977), later
extended by Fijalkow (1999). Our code is based on a slightly
modified numerical scheme described by Fijalkow (1999).

We use the Debye length λD (denoted by LD on figures)
as the unit of space and the inverse of the plasma angular fre-
quency ω−1

pe as the unit of time. The length, Lx, of the spa-
tial domain equals 512λD, sampled over nx = 1024 points,
i.e. dx = 0.5λD. The size and sampling of the velocity
domain for the electrons and protons is given by the param-
eters |vmine| = |vmaxe| = 22vthe, (dve = 0.147vthe), and
|vminp| = |vmaxp| = 12vthp, (dvp = 0.12vthp) respec-
tively. Here va,th, represents the thermal speed of the elec-
trons (a = e) and protons (a = p).

We use periodic boundary conditions for the distribution
function and the electric field in the spatial domain and cut
off values vmine,p, vmine,p for distribution functions in the
velocity domain.

3 The parametric study

We examine the nonlinear properties of the beam-plasma in-
teraction, specifically the generation of 2ωpe and−ωpe waves,
for different electron beam parameters. We consider a plasma
consisting of three components: background electrons, pro-
tons, and an electron beam. The temperature of the back-
ground electrons and protons are equal to each other, Te =
Tp = T . We perform 30 numerical experiments with varying
beam parameters: Beam density (nb = 0.015n and nb =
0.03n), velocity with respect to the background electrons
(vb = 8.1, 8.4, 8.7, 9.0vthe), and temperature (Tb = 2.0,
2.3, 2.8T ).

All the simulations have similar properties, the electron
beam generates Langmuir waves and the instability saturates
later on. During the nonlinear evolution, 2ωpe and −ωpe

waves appear. Figure 1 shows a typical evolution of simu-
lated wave spectra of fluctuating wave energy |δE2(k, t)| as
a gray scale plot with parameter values: vb = 8.7vthe, nb =
0.03n, Tb = 2.3T , where E(k, t) is obtained by a fourier
transform of the electric field E(x, t) in space. The Figure il-
lustrates the growth of the beam-generated Langmuir waves
ωpe with k ∼ 0.1 − 0.2/λD, later on the 2ωpe waves with

k ∼ 0.3/λD, and finally the growth of −ωpe waves with
k ∼ −0.1 − 0.2/λD. The dispersion relation from our nu-
merical model for the same simulation is shown in Figure 2.
Figure 2 displays the simulated spectrum |δE2(k, ω)| calcu-
lated for the period 300–600 ω−1

pe . The solid line on the plot
corresponds to the theoretical fundamental plasma frequency
ωk,1,

ωk,1 = ωpe

(

1 +
3

2
k2λ2

D

)

, (2)

the dashed line corresponds to the theoretical frequency ωk,2

as derived by Yoon (2000) and in agreement with Kasaba
et al. (2001):

ωk,2 = ωpe

(

2 +
3

4
k2λ2

D + εk

)

, (3)

where we assume that the thermal corrections are negligible,
εk ≈ 0 and finally, the dot-dashed line corresponds to a fit
suggesting the theoretical frequency ωk,3 to be:

ωk,3 = ωpe

(

3 +
3

8
k2λ2

D

)

. (4)

Note that equation (3) has been derived as an approximate
solution of the non-linear eigenmode analysis retaining the
nonlinear wave coupling term which arises from the presence
of a broad spectrum of incoherent Langmuir waves (Gaelzer
et al., 2002; Yoon, 2000).

The numerical simulations carried out in this paper show
that the main parameter that governs the plasma properties is
the time averaged energy IL

IL =

∫

4ω

∫

4k

δE2(k, ω) dω dk (5)

of the beam-generated Langmuir waves. Each energy spectra
|δE2(ω, k)| considered in this paper was calculated over the
time interval of duration 4t = 300ω−1

pe .
All modes at ωpe, 2ωpe, 3ωpe, and weak −ωpe, are well

defined in Figure 2. The theoretical curves (2), (3) and (4)
do not take into account the presence of electron beam on
the dispersion of the modes. This fact explains the small dif-
ference between the theoretical prediction (2) and the spec-
trum of Langmuir waves observed in the simulations (Cairns,
1989). The discrepancy between the harmonic emission and
the corresponding dispersion curve (3) could possibly be at-
tributed to the same effect. Figure 3 shows an approximate
growth rate of 2ωpe waves for different simulations, as a
function of the corresponding amplitude of the Langmuir waves
IL/nkT : its growth rate increases with IL/nkT for IL/nkT <
1 and decreases for IL/nkT > 1. This change in behaviour
is connected to the change of character of the electron dis-
tribution function in the nonlinear stage, which can be seen
in Figure 4. Figure 4 shows the derivative ∂f/∂v, calcu-
lated in the plateau region (v ∼ 6 − 8vthe, see Figure 6)
of the electron distribution function fe(v) for different sim-
ulations, as a function of the corresponding amplitude of the
Langmuir waves IL/nkT . Figure 4 clearly shows that the
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plateau in the electron distribution function is not formed
when IL/nkT > 1, since in this region ∂f/∂v < 0.

An estimate of the growth rate of backward propagating
waves at ωpe is shown in Figure 5. Figure 5 displays the
growth rate of −ωpe waves for different simulations, as a
function of the corresponding amplitude of the Langmuir waves
IL/nkT . The growth rate of these waves increases under the
influence of stronger turbulence IL/nkT > 1.

The results show that the output of the simulation is dif-
ferent for IL/nkT < 1 and IL/nkT > 1, which can be
seen in particular for the electrons and protons in the non-
linear stage. Figures 6 and 7 show the distribution function
f(x, v) of the electrons and protons respectively, in the non-
linear stage. Figure 6 also shows a profile (solid curve) of the
distribution function f(v), the average value of f(x, v) over
x.

The left panels of Figures 6 and 7 correspond to the case
with nb = 0.015n, vb = 8.1vthe, Tb = 2.8Te, and IL/nekTe ∼
0.02 (the weakest Langmuir turbulence from our simulation
set). The right panels show the case with nb = 0.03ne,
vb,x = 9.0vthe, Tb = 2.0Te, and IL/nekTe ∼ 16 (the
strongest Langmuir turbulence from our simulation set).

Figure 6 shows signatures of vortices, indicating electron
trapping. These vortices are thermalized in the latter stages
of the simulation (cf. Kasaba et al., 2001) for the case of
weak turbulence. Figure 6 (right panel) also shows the im-
pact of backscattered Langmuir waves on the electron distri-
bution function: with the formation of a plateau for negative
velocities (cf. Ziebell et al., 2001).

4 Concluding remarks

This study gives a quantitative description of the threshold
between weak and strong turbulence cases, based on the the-
oretical approach developed by Yoon (2000). We have per-
formed 30 numerical experiments using a standard numerical
model for the Vlasov-Poisson system.

Generalized weak turbulence theory by Yoon (2000) pre-
dicts the existence of a nonlinear mode around 2ωpe, unstable
for strong enough Langmuir turbulence, with a growth rate
γ2ωpe

proportional to the amplitude of the Langmuir wave.
Figure 3 shows that when the energy of the Langmuir waves
IL exceeds the thermal energy of the background electrons
nekTe, the growth rate γ2ωpe

decreases with IL. We can
consider the point IL/nekTe = 1 as a characteristic end-
point of the weak turbulence. Our simulations show quali-
tatively similar results to those of Ziebell et al. (2001) and
Gaelzer et al. (2002) who studied a weak beam-plasma in-
stability solving numerically the equations of (generalized)
weak plasma turbulence kinetic theory. Further comparisons
of Vlasov simulations and the work of Ziebell et al. (2001)
and Gaelzer et al. (2002) requires the use of comparable plasma
parameters and is out of the scope of this paper.

The simulation set shows that under the condition of strong
Langmuir turbulence, the electrons tend to decelerate and
move closer to the background distribution function (the deriva-

tive ∂f/∂vx calculated in the plateau region is negative). So
the derivative ∂f/∂vx is a parameter connected with the ra-
tio IL/nekTe describing the strength of the Langmuir turbu-
lence. We can conclude that the generalized weak turbulence
theory (Yoon, 2000) is valid when the amplitude of the pri-
mary Langmuir waves satisfies the relation

IL

nekTe

< 1. (6)

Further analysis should be made to check whether the pa-
rameter ∂f/∂vx plays a compensating role in the plasma for
IL/nekTe > 1, so that Yoon’s theory of generalized weak
turbulence is also valid when the energy in the Langmuir
waves IL exceeds the thermal energy of background elec-
trons (see Figure 4).

The time duration of the simulations has not been suffi-
cient to investigate the −ωpe mode more closely. Figure 5
indicates a slight increase in the growth rate of this mode
once the plasma becomes more turbulent and the backscatter-
ing of waves off ions is more likely (see Figure 7), although
the rates are to small to make any solid conclusions. This
result is in agreement with Dum (1990), who concluded that
these waves are generated by the backscattering of electrons
from thermal fluctuations of the proton distribution function.
To study this phenomena more closely will require further
numerical experiments using the later nonlinear stage of the
current model.
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Fig. 2. Simulated spectrum of the fluctuating wave energy δE 2 as a func-
tion of angular frequency ω and wave vector k calculated during the in-
terval 4t = 300–600ω−1

pe . The solid curve shows the linear disper-
sion relation ωk,1 = ωpe(1 + 3/2k2λ2

D
), the dashed curve shows the

nonlinear dispersion relation ωk,2 = ωpe(2 + 3/4k2λ2

D
), and the dot-

dashed curve shows the expected theoretical nonlinear dispersion relation
ωk,3 = ωpe(3 + 3/8k2λ2

D
).

Fig. 3. Approximate growth rate of 2ωpe waves for different simulations as
a function of the corresponding Langmuir waves amplitude, IL/nkT .
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Fig. 4. The derivative ∂f/∂v calculated in the plateau region of f(v) for
different simulations as a function of the corresponding Langmuir wave am-
plitude, IL/nkT .

Fig. 5. An estimation of the growth rate of −ωpe waves for different
simulations as a function of the corresponding Langmuir waves amplitude,
IL/nkT .
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Fig. 6. The electron distribution function in the nonlinear stage of the simulation (t = 500ω−1
pe ). The left panel corresponds to the case with nb = 0.015n,

vb = 8.1vthe , Tb = 2.8Te, and IL/nekTe ∼ 0.02. The right panel shows the case with nb = 0.03ne, vb,x = 9.0vthe , Tb = 2.0Te, and IL/nekTe ∼
16. Solid curves show a profile of the corresponding distribution function averaged over x.

Fig. 7. The proton distribution function in the nonlinear stage of the simulation (t = 500ω−1
pe ). The left panel corresponds to the case with nb = 0.015n,

vb = 8.1vthe , Tb = 2.8Te, and IL/nekTe ∼ 0.02. The right panel shows the case with nb = 0.03ne, vb,x = 9.0vthe , Tb = 2.0Te, and IL/nekTe ∼
16.


