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tumblers

• most asteroids in a basic rotation state (rotate around the

principal axis with the largest moment of inertia) – mostly

derived from their lightcurves

• some asteroids in an excited state of rotation (free

precession) – they are called tumblers (Harris 1994)

• in precessing body the energy of rotation is dissipated over

time and the rotation is gradually damped

Q what caused their excited rotation?



excitation processes

• torque related to YORP (Yarkovsky–O’Keefe–Radzievskii–

Paddack) effect – Vokrouhlický et al. 2007

• collisions proposed by several authors (Burns & Safronov

1973, Paolicchi et al. 2002, Pravec et al. 2005)

• motivated by the presence of huge impact craters on the

surface of many small bodies (asteroids, planetary moons)

• our research: the physical plausibility of excitation by

subcatastrophic collisions = cratering impacts that do not

disrupt or seriously shatter the asteroid



subcatastrophic collision model

system of two colliding bodies

• the larger one (target) is triaxial ellipsoid, the smaller one is

a sphere (impactor, projectile), both are homogeneous (in

some simulations we assumed some macroporosity as well)

• before the impact the target is rotating in a basic state

• hypervelocity impact forms an impact crater on the target’s

surface – its dimensions are calculated by scaling laws

(Holsapple & Housen 1993, Holsapple 2003)



subcatastrophic collision model

• linear and angular momentum (AM) exchange between the

bodies during the collision

• part of the momentum and AM carried away by ejecta – we

calculate the momentum and AM transfer efficiency according

to Yanagisawa et al. 1996 and Yanagisawa & Hasegawa 2000

• we calculate the inertia tensor of the ellipsoidal target body

with the crater

⇒ we know the rotation of the asteroid after the collision and we

can calculate its lightcurve



lightcurve calculation

• for every impacted body we calculated its lightcurve

(Kaasalainen 2001; Ďurech 2011, pers. comm.)

Q is tumbling detectable in the lightcurve by the distant

photometry?

• if yes, how large was the excitation of asteroid rotation for

specific input parameters?

• as a measure of the excited rotation we took the angle β

between the target shortest principal axis and its rotational

AM vector



sample lightcurves

lightcurves for increasing beta or AM ratio
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β – the angle between the target shortest principal axis

and its rotational AM vector

• after the collision, this angle is close to the amplitude of the

nutation angle

• we tested the sensitivity of the outcome on several input

parameters (target size, projectile size, initial rotation period

of the target, its material strength, changing shape of the

target)

• the determining parameter of the collision is the AM ratio

(total orbital AM to the target’s rotational AM) and there is a

simple relation of β to this ratio



β = f (Lorb/Lt), βtumbling ∼ 15 deg
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threshold energy

• the projectile kinetic energy in every collision was compared to

the threshold specific impact energy

• it is the energy which is necessary to seriously shatter the body

• in our calculations we used 1/4 of the shattering energy value

according to Housen 2009 and Stewart & Leinhardt 2012



specific impact energy vs. target size
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conclusions

• subcatastrophic collisions are physically plausible mechanism

for asteroid rotation excitation

• for β ∼ 15 deg the tumbling can be detected by distant

photometry

• the determining parameter of the collision is the ratio of

orbital AM to target’s rotational AM

• we find the relation between this AM ratio and β

• slowly rotating asteroids of ∼ 100 m and larger can be excited

by collision without being shattered

• published in Henych & Pravec 2013, MNRAS 432, Issue 2,

doi: 10.1093/mnras/stt581



model weaknesses

• momentum and AM transfer efficiency can be different (can

be greater than 1 and possibly far greater than 1 – Walker et

al. 2012, Holsapple & Housen 2012)

• scaling laws work for small to moderate incidence angles and

for halfspace, we used it for finite curved surface

• there are other crater formation scenarios, especially

compaction mechanism for porous materials proposed by

Housen et al. 1999



further work

• improve porosity description

• extend the collisional model for irregular bodies

• run randomized simulations to find the average coll. excitation

in a specific asteroid population

• evolutionary model (incl. YORP effect and excited rotation

damping) to test the hypothesis of coll. origin of tumbling

• advertisement: SPH or SPH+N-body simulation validation of

our results
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cosβ = ±
[

1 +
sin2 ψ

(Lt/Lorb + cosψ)2

]−1/2

+ sign: Lt ≥ −Lorb cosψ

− sign: Lt < −Lorb cosψ

ψ: the angle between the two angular mometum vectors before the

collision



compaction mechanism

• craters on 253 Mathilde (tumbler) are very large, close to

each other and lack larger ejecta

• Housen et al. 1999 proposed the compaction mechanism of

cratering on Mathilde

• the projectile compresses the porous material, large portion of

its kinetic energy is consumed
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target’s initial rotation period
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target’s material strength
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projectile size
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