Study of the White-light Emission During the X9.3 Flare on September 06, 2017

J. Kašparová¹, L. Mravcová^{1,2}, M. Švanda^{1,2}, J. Jurčák¹, P.Heinzel¹

¹Astronomical Institute of the CAS, Ondřejov, Czech Republic

²Astronomical Institute, Charles University, Prague, Czech Republic

FACULTY OF MATHEMATICS AND PHYSICS Charles University

Abstract. Using data from SDO/HMI, Hinode/SOT, and LYRA instruments we study the white-light continuum emission during the X9.3 solar flare (SOL2017-09-06T11:53). Assuming that the emission is due to hydrogen Balmer and Paschen continua, we estimate the temperature evolution during that solar flare.

September 6, 2017 X9.3 flare

- the largest flare of 24th solar cycle
- started at ~ 11 : 53 UT
- detected by several instruments, e.g.:
 - RHESSI, Fermi: gradual phase only
 - Hinode: SOT/SP
 - *SDO*/HMI: white-light pseudo-continuum
 - LYRA: solar irradiance in UV range

Proba 2/LYRA Channel 2 data

- Large Yield RAdiometer (LYRA) on board Proba 2 (Hochedez et al., 2006)
 - solar irradiance at 4 channels
 - Channel 2: Herzberg channel, 1990 2200 Å, temporal cadence 20 Hz

Sep 6, 2017 flare - Dominique et al. (2018)

- the first flare detected in Channel 2
- emission consistent with hydrogen Balmer continuum

HMI pseudo-continuum $I_{\rm C}$

- HMI data product from Fe I 617.3 nm scans
- 45 s time cadence, 0.5" spatial sampling

HMI flare emission

- space-temporal analysis
- based on *I*_C difference above a threshold

 $egin{aligned} & I_{
m C}^{
m diff}(x,y) > 5 \; k \; I_{
m C}^{
m PF}(x,y) \,, \ & k = 0.01 \,, \ & I_{
m C}^{
m PF} = \overline{I_{
m C}(11\!:\!30-11\!:\!40)} \end{aligned}$

- a flare pixel must
 - have at least 2 neighbours at start
 - occur on 3 subsequent frames at least
- end of a flare pixel light curve defined as time when $\overline{I_{\rm C}}(x, y)$ reached $I_{\rm C}^{PF}(x, y)$ within 5%
 - a box car over 5 frames

$$\sigma(I_{\mathsf{C}}) = kI_{\mathsf{C}}$$

$$\Rightarrow$$
 Flare pixel light curves

HMI versus Hinode data check

 Švanda et al. (2018) showed HMI product I_c can be off from continuum intensity close to Fe I 630 nm lines observed by Hinode

- no systematic offset of $I_{\rm C}$
- no correction applied

Assumptions

- optically thin emission from a layer of thickness L
- intensity of recombination continua (Heinzel et al. 2017; Dominique et al., 2018)

i=2,3,4.. Balmer, Paschen, Brackett,..

$$I_{\nu} = n_{e}^{2} F_{i}(\nu, T) L$$

 $F_{i}(\nu, T) \sim B_{\nu}(T) T^{-3/2} e^{h\nu_{i}/kT} (1 - e^{h\nu/kT})/(i\nu)^{3}$

continuum heads: $\lambda_2 = 364.6 \text{ nm}$ $\lambda_3 = 820.4 \text{ nm}$ $\lambda_4 = 1458 \text{ nm}$ emission data: $\lambda_{LYRA} = 200 \text{ nm}$ $\lambda_{HMI} = 617.3 \text{ nm}$

Predicted LYRA emission from HMI data

• for a given T, HMI gives emission measure $[n_e^2 L](t)$

$$[n_{e}^{2}L](t) = \sum_{\text{flare pixels}} I_{\text{HMI}}(t) / [F_{3}(\nu_{\text{HMI}}, T) + F_{4}(\nu_{\text{HMI}}, T]]$$

$$I_{\rm LYRA}(t) = [n_{\rm e}^2 L](t) [F_2(\nu_{\rm LYRA}, T) + F_3(\nu_{\rm LYRA}, T) + F_4(\nu_{\rm LYRA}, T]$$

• predicted LYRA irradiance $E_2(t)$ using Dominique et al. (2018)

 $E_2(t)\sim \int_\lambda S_2(\lambda) I_{ ext{LYRA}}(t) \, \mathrm{d}\lambda \qquad S_2(\lambda) \, ... \, \, ext{eff.} \, \, ext{area}$

Predicted LYRA emission for several T

• predicted LYRA irradiance $E_2(t)$ for a set of T

[•] $E_2(t)$ sensitive to T

Assumptions

- $I_{\rm C}$ and E_2 given by hydrogen recombination continua
- continua formed within the same optically thin layer

 \Rightarrow ratio $I_{C}/E_{2} \equiv f(T) \Rightarrow$ mean T(t)

Conclusions

- HMI and LYRA data were used to study flare continuum emission
- assuming the emission is due to hydrogen recombination, mean temperature in the flaring area can be determined
- preliminary results show $T(t) \sim 7000 11000$ K during the impulsive phase of an X9.3 flare

References

Dominique et al, 2018, ApJL, 867, L24 Heinzel et al, 2017, ApJ, id. 48 Hochedez et al, 2006, AdSpR, 37, 303 Švanda et al, 2018, ApJ, 860, id. 144