

full-Sun mosaics: the sources of novel reference Mg II h & k profiles for radiative-transfer modeling

Július Koza¹, Stanislav Gunár², Pavol Schwartz¹, Petr Heinzel², Wenjuan Liu² ¹ Astronomical Institute of the Slovak Academy of Sciences, Tatranská Lomnica, The Slovak Republic ² Astronomical Institute, The Czech Academy of Sciences, Ondřejov, Czech Republic

Astronomický ústav AV ČR

Abstract

Data used

 the IRIS catalog of full-Sun near-UV mosaics obtained in the years 2013 – 2020.

Results

- high-precision reference Mg II h & k profiles that represent the quiet Sun during a minimum of the solar activity,
- a novel model of evolution of their spectral shapes over the solar cycle.

Applicability of results

 definition of incident radiation in the Mg II h & k lines for radiative-transfer modeling of prominences, flare loops, CMEs, surges, and spicules.

Data and code availability

- the machine readable tables of reference Mg II h & k profiles with uncertainties and their center-to-limb and cyclic variation are provided online through the NASA's ADS,
- the IDL routines, representing the model of temporal evolution of full-disk Mg II h & k profiles over the solar

Mg II h & k cyclic variability - IRIS's view of solar cycle 24

Mg II k mosaic in k₃ - 17 Mar 2014 max of solar cycle 24 - Apr 2014

Å⁻¹)

ъ

[MⅢ)

17 Mar 2014

(max of SC24)

Mg II k mosaic in k₃ - 20 Oct 2019 end of solar cycle 24 - Dec 2019 Comparison with solar UV indices

IRIS Mg II k

IRIS Mg II h

Disk-averaged Mg II h & k profiles change substantially over solar cycle (compare bottom panels). The wavelength integrated spectral irradiances SI($\Delta\lambda = 1$ Å) correlate with the Bremen composite Mg II index with cc = 0.94 and the composite Lyman- α index with cc = 0.92 (right panel). The high correlations verify the long-term stability of IRIS radiometric calibration and qualify the

cycle, are publicly available at:

https://github.com/jkidl/IRIS

(-¥ 20

A 15

B

20 Oct 2019

(end of SC24)

IRIS Mg II k

IRIS Mg II h

IRIS NUV full-Sun mosaics for solar cycle studies and definition of reference profiles.

Data-driven Model of Temporal Evolution of Solar Mg II h & k Profiles over the Solar Cycle

Model construction

- employment of 76 selected IRIS near-UV full-Sun mosaics covering almost the full solar cycle 24,
- finding nine parameters {A_i, Δλ_i, σ_i, a, b, c} of additive double-Gaussian model of the disk-averaged profiles,
- finding a liner model of temporal evolution of the double-Gaussian parameters which is pameterized by

the Bremen composite Mg II index as a proxy of time.

Additive double-Gaussian model

Correlations between the Bremen Mg II index and the parameters { A_i , $\Delta\lambda_i$, σ_i , a, b, c} of the double-Gaussian model obtained by fitting disk-averaged Mg II h profiles. The solid lines are linear fits representing the model of evolution of Mg II h profiles in solar cycle 24.

IRIS spectral irradiances reconstructed by the model (gray dots in top panels) and computed by the SORCE/SOLSTICE observations (gray dots in bottom panels) taking integration intervals Λ of 1 Å and 1.75 Å. The red and blue lines represent boxcar-averaged values smoothed over 399 days. The different line styles distinguish between the intervals of 1 Å (solid in top panels) and 1.75 Å (dotted in top and bottom panels) for the IRIS model reconstructions and of 1.75 Å for the SORCE/SOLSTICE observations (solid in bottom panels). The relative variations with respect to the minima are shown at the right *y*-axes.

References

"Quiet-Sun Mg II h and k Line Profiles Derived from IRIS Full-Sun Mosaics. I. Reference Profiles and Center-to-limb Variation" Stanislav Gunár, Július Koza, Pavol Schwartz, Petr Heinzel, and Wenjuan Liu, ApJS 255, 16 (2021)

"Data-driven Model of Temporal Evolution of Solar Mg II h and k Profiles over the Solar Cycle"

Július Koza, Stanislav Gunár, Pavol Schwartz, Petr Heinzel, and Wenjuan Liu, ApJS 261, 17 (2022)

Acknowledgments This research and contribution were supported by the project VEGA 2/0048/20.