NoEUV & UV strands and variability associated with coronal rainNoPatrick Antolin¹, Juan Martinez-Sykora^{2,3,4,5} & Seray Sahin¹

³Bay Area Environment Research Institute (US),

¹Northumbria University (Newcastle upon Tyne, UK), ²Lockheed Martin Solar & Astrophysics Laboratory (US)

INTRODUCTION

- * Why is the corona increasingly filamentary, strongly variable and dynamic at cooler EUV and UV lines? [1]
- ***** What determines the observed length scales of EUV strands? [2,3]

A look at the cool corona may provide the answers

* Coronal rain: Partially ionised cool (10⁴ – 10⁵ K) & dense (10¹⁰ – 10¹² cm⁻³), occurring in a timescale of minutes in coronal loops [4]

* Origins: Thermal instability (TI) in coronal loops under thermal nonequilibrium (TNE) [5]. TI drives catastrophic cooling leading to the formation of condensations composing coronal rain [6]. The widths of condensations match the widths of observed EUV strands. Why?

* Conditions for TNE: Highly stratified, high-frequency heating with little asymmetry across footpoints [7]

Science & Technology

Facilities Counci

Active network |B|~190 G, Δx = 14 km, non-uniform resolution, up to TR; Periodic BC in x, open in z; Constant entropy inflow at T_{eff} = 5780 K; Optically thick radiation from non-LTE formulation with RADYN (Carlsson & Leenaarts 2012) & scattering (Skartlien 2000, Hayek+2010); Optically thin radiation in corona with CHIANTI (Del Zanna+ 2021)
 Strongly stratified (Qapex/Qfootpoint <0.1), high-frequency (<3):
 TNE-TI scenario [7]

Õ

N

 \mathbf{O}

METHODS

* 2.5D Radiative MHD high-resolution simulations with Bifrost: coronal rain produced self-consistently through Joule heating

*** IRIS+AIA & SoLO/EUI HRI Observations**

RESULTS

Simulations: Antolin, Martínez-Sykora & Sahin, ApJL 926, 29 (2022)
 Observations: [8], Antolin+ in prep.

★ Catastrophic cooling: $10^{6} \text{ K} \rightarrow 2 \times 10^{5} \text{ K} : 500 - 1000 \text{ K s}^{-1}$ $2 \times 10^{5} \text{ K} \rightarrow 10^{4} \text{ K} : 2000 - 5000 \text{ K s}^{-1}$ ★ Thermal instability is triggered: loss of pressure and formation of condensation

* Multi-thermal & inhomogeneous. Strong deformation due to shear flows and density inhomogeneities in clump.

* Very cool (7000 K) & high density core (10¹² cm⁻³) at head (falls fastest): gas pressure effect [9]

* Chromospheric core width ~ 100-200 km in agreement with highres Hα observations with NST & SST [10,11]

Current ground-based instrumentation resolve the bulk of the rain

* Elongated warm tail: $T = 10^{4.2} - 10^{4.5}$ K, $n = 10^{10.5} - 10^{11.2}$ cm⁻³

 Very thin CCTR (Condensation Corona Transition region) ~ 100 km
 Fundamental magnetic strands form: loss of pressure produced by TI and flux freezing brings magnetic field lines together during the formation of coronal rain (similar effect in ISM/ICM! [12]

- **Compression ahead of rain as it falls observed with SoLO/HRI 174**
- Impact: very short (~20 s) and bright UV/EUV bursts, in agreement with IRIS [13] and SoLO/HRI observations
- After impact: rebound shock+flow, in agreement with SoLO/HRI 174 observations (Antolin+ in prep.)
- Strongly emitting Fe IX 171.073 Å plume-like, filamentary structure, in agreement with observations
- Emitting thin sheath around the rain and wake in TR due to CCTR
- Long filamentary structure in TR lines (40 Mm)
- Link between rain strand and observed coronal strands with Hi-C [3,11]

20 Time (min)

CONCLUSIONS

TI plays a major role in observed filamentary

- Widths of UV-EUV strands: elemental scale of heat transport in corona? Likely set by magneto convection processes
 - Rain bulk distribution currently resolved in observations?

REFERENCES

- (1) Ugarte-Urra+, ApJ 695, 643 (2009)
- (2) Brooks+, ApJL 772, 19 (2013)
- (3) Williams+, ApJ 892, 134 (2020)
 - Antolin & Rouppe van der Voort, ApJ 745, 152 (2012)
- 5) Antolin & Froment, FrASS 9 (2022)
- 6) Antolin, PPCF 62, 014016 (2020)
- 7) Klimchuk & Luna, ApJ 884, 68 (2019)
- (8) Sahin & Antolin, ApJL 931, 27 (2022)
- (9) Oliver+, ApJ 784, 21 (2014)
 (10) Jing+, Sci Rep 6, 24319 (2016)
 (11) Antolin+, ApJ 806, 81 (2015)
 (12) Sharma+ ApJ 720, 652 (2010)
 (13) Kleint+ ApJL 789, 42 (2014)