

Solar spicules in MHD simulations and insights from fluid jets in laboratory Sahel Dey^a, Piyali Chatterjee^b, Murthy O. V. S. N., M. B. Korsós, Jiajia Liu, C. J. Nelson, Robertus Erdélyi

^asahel.dey@iiap.res.in, ^bpiyali.chatterjee@iiap.res.in Nature Physics 18, 595–600 (2022)

1. Motivation

Solar spicules are plasma jets, observed in the interface region between the visible solar surface and the hot corona [Beckers 1972]. Several formation mechanisms (e.g., solar global acoustic waves, shocks, magnetic **reconnection**) are proposed, but they are not able to quantitatively match both the heights and abundance of the observed solar spicules.

2. Simulation and experiment setup

Radiative MHD simulations using the PENCIL CODE [Brandenburg et al. 2020]. Two set-ups with a uniform grid spacing of 16 km and extending from solar sub-surface to corona-(i) sinusoidal driving like solar p-mode at the photosphere and, (ii) by self consistently excited solar convection **Dey et al. 2022** in presence of a uniform vertical magnetic field.

Semi-relativistic Boris Assumptions: (a)radiative transfer, (c) correction, (b) LTE conduction Chatterjee Anisotropic heat

3. A quick look into polymer fluids

Polymeric solutions consist of long chains of monomer molecules. Uncoiling chains under shear **back reacts** on the fluid flow, similar tension the of to magacting fields the plasma flow. netic on

2020].

Laboratory experiments: Newtonian fluids: water, glycerin, and visco-elastic poly-Polyethylene oxide(PEO), Poly vinyl mers: alcohol(PVA) solutions are subjected to quasiperiodic vibrations by a sub-woofer speaker, known as Faraday excitation [Faraday 1831]

4. Forest of jets and the parallel between Maxwell and Viscoelastic stresses

Polymer fluid jets subjected to $10,000 \times$ sped up p-mode (SOHO/MDI) oscillation

 $\frac{\partial \boldsymbol{T}_{\mathrm{p}}}{\partial t} + \boldsymbol{U} \cdot \nabla \boldsymbol{T}_{\mathrm{p}} - (\nabla \boldsymbol{U})^{\mathrm{T}} \cdot \boldsymbol{T}_{\mathrm{p}} - \boldsymbol{T}_{\mathrm{p}} \cdot \nabla \boldsymbol{U} = -\frac{1}{\tau} \left(\boldsymbol{T}_{\mathrm{p}} - \frac{\mu_{\mathrm{p}}}{\tau} \boldsymbol{1} \right),$

5. A threshold driving acceleration

Fig. 2: A phase plot of driving acceleration A_0 vs frequency, f_0 to determine the **threshold acceleration**, A_{\min} for both the plasma (left) and polymeric fluid (right) systems. Any simulation with given A_0 and f_0 either produces a forest of jets (filled triangles) when above a threshold or does not (open triangles). The behaviour of the A_0-f_0 curve in region R2 is similar in both mediums.

$$t \pmod{t}$$

$$\frac{\partial \boldsymbol{T}_{\mathrm{m}}}{\partial t} + \boldsymbol{U} \cdot \nabla \boldsymbol{T}_{\mathrm{m}} - (\nabla \boldsymbol{U})^{\mathrm{T}} \cdot \boldsymbol{T}_{\mathrm{m}} - \boldsymbol{T}_{\mathrm{m}} \cdot \nabla \boldsymbol{U} = \frac{\eta}{\mu_{0}} [\boldsymbol{B} \nabla^{2} \boldsymbol{B} + (\nabla^{2} \boldsymbol{B}) \boldsymbol{B}]$$

 T_p : polymeric stress, τ : relaxation time T_m : magnetic stress, η : magnetic diffusivity Under diffusivity, $\eta \to 0$ and relaxation time, $\tau \to \infty$ approximation, the governing equations in MHD and Oldroyd-B model for dilute polymer (where chain-chain interaction is negligible) [Ogilvie] & **Proctor 2003**] become equivalent.

6. Role of anisotropy to drive jets and quantification of associated turbulence suppression $\log_{10} T(K)$ without polymer (water) 500 5.6 6.0 0.8 400 15 300 \geq (mM) z 0.4 200 with polymer 0.2 100 0.8 1.2 0.4 2 -2 0 $B/B_0 (\times 10^{-1})$ *x* (Mm) x (Mm)

3a: Magnetic fields collimate plasma into F'ig.

uncoiling polymer Fig. 3b: The chains suppress droplet splashing (Plateau–Rayleigh instability) in fluid by absorbing turbulent energy from flow.

Fig. 4: Quantifying the effect of the imposed magnetic field on the anisotropy by measuring the number of vortices, N (left), and effect of polymer **concentration** on number of fluid droplet ejections, N (right).

jet structures via the Maxwell stress, suppressing the Kelvin Helmholtz instability.

7. Synthetic intensity of forest of spicules from convection simulation

8. Key results

• Four criteria to excite a forest of jets in disparate systems: (a) fluid medium (b) gravity (c) large-amplitude quasi-periodic driving (d) anisotropy of the medium

• We find a forest of spicules in the convection simulation, bearing substantially resemblance to observed solar clusters of jets (Fig. 5a)

• Generation of solar jets by (1) collapse of granules and (2) global modes (3) aided by magnetic reconnection processes are triggered by the same agent, solar convection

5a: Spicules at the limb position folded with Si IV Fig. filter (plasma at $T = 8 \times 10^4$ K) and solar-like convection(without any external periodic forcing).

Fig. 5b: Formation of spicules by squeezing a fluxtube at the two neighbouring granules (analysis by Lagrangian tracer particles).