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Takeaways

e Radiation from a relatively weak flare
can significantly affect atomic level
populations and outgoing intensity
over 1 Mm (horizontally) away.

* The plane-parallel approximation
used in flare-modelling may lead to:

* Incorrect evaluation of spectral line
shapes.

* Significant errors in radiative losses, and
therefore in the plasma evolution.

* Lots more exciting work to be done!
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The Importance of Dimensionality

World is (at-least!) three-dimensional.
Current flare models are not (field-aligned 1D).

Models assume variations stratified along

magnetic field lines.
* Conduction/particle flux suppressed across these

Light is not.

Individual flare kernels are small:
Flux tube bundles 10s-100s km diameter.

Anisotropies in plasma:
Flares produce huge variations in plasma

parameters and the radiation field.
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Model 1

* What effect does a flare’s radiation field
have on adjacent chromosphere?

* 2.5D modelling is equivalent to a flare ribbon
(into/out of page)

e 2 Irradiating RADYN models (reprocessed
with Lightweaver).
« F=10%10% erg/cm?/s for 10 s
e 6=5
« E.=20keV

* Hydrogen ionization is very time-dependent
(Carlsson & Stein 2002, Leenaarts et al
2007)

* Reprocess at RADYN'’s timestep over the full 2D
domain.

* Full CRD NLTE treatment for 6-level H and Ca.
* Charge-conservation.

Outgoing Radiation

Boundary imposed from quiet sun model




Model 1 F10 Results (Slit Spectrograph)
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Where is this coming from? (Contribution Functions)

FO: t=10s
C;: Ha S: Ha C;: Ca11854.2 nm S: Cai11854.2 nm
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Method similar to COCOPLOT of Druett et al (2021), contribution function integrated over small
Gaussian kernels in wavelength.
Line formation regions can change by over 1 Mm from purely radiative influence! 7



s this helpful?

e Let’s get a trusty tool from the RT

toolbox, the Eddington-Barbier relation:

L(t,=0,up=1)=S,(1y,=1)
* Looks pretty good for Ha.

e But fails for Ca 11 854.2 nm.

* Compare difference between dashed
and solid lines with enhancement cuts

in lower panel.
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Was time-dependence really necessary?
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Another model?



Okay, but was the plane-parallel treatment of the flare boundary reasonable?

| started by saying that flare kernels are small...

0.125-0.5 Mm

<« »

* Does this affect the outgoing line-profiles?

* |dea that plane-parallel slabs have infinite extent is
clearly unphysical.

e New Model!

e Put the flare inside the slab, but still hold
“quiet” slab properties constant.
* Different widths: 0.125 - 0.5 Mm

Periodic Boundary

* Periodic boundary conditions in x

11

Periodic Boundary
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Ca 1z 854.2 nm Line Profiles, Kernel: 0.5 Mm
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Closer, but some key differences.
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Let’s look at the contribution functions

Ha, t=48.0s
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Radiative Gain [W/m~3]

Radiative Losses
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Conclusions

Still lots to be done, increasing the dimensionality of radiative transfer for flares.
e |t matters!

* Radiation has far-reaching effects (not constrained by magnetic field)
e Enhancement isn’t uniform over wavelength (filling factors...)

* Looking now at IRIS transition region lines; effects are present, but different... watch this space.

* Field-aligned flare models likely overestimate the intensity, line shape is strongly affected.
* Lines form in different regions: losses are affected!

* |s there an ad hoc way to account for this?

Thanks for your attention!
Christopher.Osborne@glasgow.ac.uk

@Goobley MNRAS preprint: stac2570
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Did someone say tensors?
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Significant anisotropy of the radiation field;
will further increase with model complexity,
leading to scattering polarization effects.
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Likely lower bounds, as only Stokes | components included (Trujillo Bueno 2001).

19



Did someone say tensors?

“Breaking of axial symmetry”.
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