

Heating of the solar chromosphere

João M. da Silva Santos

National Solar Observatory, Boulder, CO, USA

jdasilvasantos@nso.edu

Thanks to: S. Danilovic, J. Leenaarts, J. de la Cruz Rodríguez, X. Zhu, S. White, G. Vissers & M. Rempel

"(...) dissipation of energy carried by waves generated in the convection zone is the most likely source of the energy heating the chromosphere."

reconnection?

shocks?

reconnection?

MHD waves?

reconnection

shocks?

Alfvén turbulence?

- Joule heating (w/ ambipolar diffusion?) MHD waves?

Background: IRIS SJI Mg II k

High-resolution proxies for chromospheric heating

SST/CRISP and CHROMIS observations

Leenaarts+ (2018)

Anan+ (2021)

Spatially resolved chromospheric radiative losses

Electric currents in the chromosphere are poorly understood

He I 10830, VTT observations

Solanki+ (2003)

Ca II 8542, Dunn/IBIS observations

Louis+ (2021)

Heating in chromospheric current sheets: UV-bursts

Hansteen+ (2019)

see also, e.g., Nobrega-Siverio+ (2017); Priest+ (2018); Peter+ (2019)

Joint observations with ALMA and the 1-m SST in 2019

da Silva Santos+ (2020, 2022a, 2022b)

14:15 ... 17:50 UT

Hinode/SOT/SP and EIS: Fe I 6301 magnetograms and EUV lines

18:50 UT

SST/CRISP: Ca II 8542 and Fe I 6173 (polarimetry), <u>single scan</u>

IRIS: NUV (e.g. Mg II h and k), FUV (e.g. Si IV, C II) passbands, dense raster ALMA: Band 6 (1.25 mm continuum), baselines up to 700 m – 0.6 arcsec, mosaic

ALMA: Band 3 (3 mm continuum), baselines up to 700 m – 1.2 arcsec, 2sec cadence

All data are available upon request

Flux emergence and chromospheric heating

da Silva Santos+ (2022, A&A, 661, A59)

Non-LTE inversions of SST/CRISP+ALMA 3 mm data

Magnetohydrostatic extrapolation based on the SST+HMI (composite) vector magnetogram

Heyvaerts+ (1977)

see also, e.g., Galsgaard+ (2007) Cheung & Isobe (2014) Archontis & Hansteen (2014) Ortiz+ (2016)

da Silva Santos+ (2022)

see e.g., Zhu & Wiegelmann (2018); Zhu+ (2020) on the extrapolation algorithm

3D MURaM simulation of flux emergence \rightarrow

 λ 8542 TLP

 λ 8542 TCP

selected snapshot for analysis

- ^A Vertical slices of the MURaM atmosphere
- ^B 3 mm brightness temperature
- ^c Total heating rates within the 3 mm formation range (**capped**)
- ^D Chromospheric radiative losses within the 3 mm formation range

e (**capped**) mation range

IRIS / Hinode / ALMA observations of the AR hours earlier

Attempting to invert IRIS + Hinode + ALMA spectra of a UVB (using STiC)

Conclusions

- Persistent, enhanced chromospheric temperatures are associated with the interaction of low-lying magnetic loops and the canopy in an AR.
- Radiative cooling rates (upper chromosphere ~10,000 K) up to ~5 kW m⁻² – a factor >2 higher than in the surroundings.
- The main observables are reproduced by MURaM simulation.
- Impact of NEQHION on the mm continuum during flux emergence?

