

Bay Area
Environmental
Research
Institute

Juraj Lorincik^{1,2}, Vanessa Polito^{1,2,3}, Bart De Pontieu^{2,4,5} Sijie Yu⁶, Nabil Freij^{1,2}

I- Bay Area Environmental Research Institute
2- Lockheed Martin Solar & Astrophysics Laboratory
3- Department of Physics, Oregon State University
4- Institute of Theoretical Astrophysics, University of Oslo
5- Rosseland Centre for Solar Physics, University of Oslo
6- Center for Solar-Terrestrial Research, New Jersey Institute of Technology

Hinode-15/IRIS-12 meeting, 2022 September 19 – 23, Prague

Si IV spectra in IRIS flare observations

- Usually redshifts or red-wing enhancements tracing downflows induced by chrom. condensation (e.g. Tian et al. 2015)
- Jeffrey et al. 2018:

2016 Dec 6 B-class flare quasi-periodic broadening in a ribbon (left figure), P = 11.5 s oscillations prior to the peak of the intensity, unrelated to the evaporation MHD turbulence developing in the lower atmosphere at flare onset see also Kontar et al. 2017

• Chitta & Lazarian 2020:

0.30

0.20

0.15

otal FWHM [Å]

Y=[-114.9 ",-112.9 "]

880

900

920

940

Time [s]

960

microflares on 2014 May 25, 2016 July 18 quasi-periodicities in excess line width and intensity (right figure) turbulence driving (fast) magnetic reconnection

from Chitta et al. 2020

2022 January 18 M-class flare

- Interface Region Imaging Spectrograph (De Pontieu et al. 2014, 2021)
- High priority IRIS science target since Fall 2021: flare observations at sub-second cadence

SJI 2796Å

200

17:29:59 UT

790

800

 2022 January 18 M1.5-class flare: the first major flare observed in high-cadence mode sit and stare mode, 0.8 s raster & SJI cadence, 0.3 s exposure time C II 1336, Si IV 1403, Mg II k 2796, 2814 spectral windows

Two-ribbon flare, southern ribbon under slit, bright kernels from E to W after 17:33 UT

• Maps of Si IV 1402.77Å line moments

- Maps (Solar Y vs. t) of Si IV properties resulting from moment analysis:
 I) intensity (top)
 - 2) Doppler velocity v_D (middle)
 - 3) non-thermal broadening v_{nt} (bottom)
- Arrows: time evolution of the Si IV properties along selected Y-pixels during their initial growth
- High-frequency enhancements (P < 10 s) of the 3 properties

- The oscillations do not have a counterpart in imaging observations
- What is driving them?

Double-peaked Si IV line profiles

- k-means clustering: ca. 35% profiles in the analyzed period exhibited secondary redshifted component
- Strong red wing of the line (RG #**9**, 12, 29)
- Large separation between the components (RG #18) up to 60 km/s
- Mostly during the period of the initial growth of the 3 parameters of the Si IV line
- Note that IRIS flare observations rarely report on:
- So large separation of Si IV components
- Secondary component redshifts to more than 50 km/s 2.

Profiles similar to RG #18 reported e.g. by Brannon et al. 2015

groups

Two-Gaussian fits to Si IV spectra

- GI fitting the primary component
- G2 fitting the redshifted component
- Figure: time evolution of the Gaussian

 intensity
 Doppler velocity v_D
 non-thermal broadening v_{nt}
- Redshifts of G2 reach up to 70 km/s

Two-Gaussian fits to Si IV spectra

- GI fitting the primary component
- G2 fitting the redshifted component
- Figure: time evolution of the Gaussian

 intensity
 Doppler velocity v_D
 non-thermal broadening v_{nt}
- Redshifts of G2 reach up to 70 km/s
- Note the correspondence between the peaks in v_D & amplitude (intensity) of G2 and the entire profile resulting from the moment analysis!

Correlation analysis

- Vertical axis: v_{nt} of the entire profile determined via the moment analysis (MA)
- Horizontal axes: 3 properties of GI and G2
- v_{nt} (MA) strongly correlated with the Doppler shift of G2
- v_{nt} (MA) only moderately correlated with v_{nt} of GI
- enhancements of v_{nt} (MA) due to oscillating redshifts of the secondary component of the line and not (only) 'real' broadening of profile
- Reported at footpoints of coronal loops (De Pontieu & McIntosh 2010)

What is the origin of the secondary redshifted component?

RADYN simulations of Kowalski et al. 2017:

heating with high non-thermal flux $F = 5.10^{11}$ erg/cm²/s, $\delta = 4.2$, $E_c = 25$ keV over 15 s 2 emitting regions in the chromosphere: condensing layer and stationary layer below it

• Kowalski et al. 2022:

short-lasting condensation over 100 km/s at maximum gas density

• Our observations: secondary component temporarily redshifted to 70 km/s

from Kowalski et al. 2022

What is the origin of the secondary redshifted component?

• RADYN simulations of Kowalski et al. 2017:

heating with high non-thermal flux $F = 5.10^{11}$ erg/cm²/s, $\delta = 4.2$, $E_c = 25$ keV over 15 s 2 emitting regions in the chromosphere: condensing layer and stationary layer below it

• Kowalski et al. 2022:

short-lasting condensation over 100 km/s at maximum gas density

• Our observations: secondary component temporarily redshifted to 70 km/s

from Kowalski et al. 2022

Estimating field-aligned flow speeds

- How large would the redshifts be if the flare loops were oriented along the LOS of IRIS?
- Estimating viewing angle α between the LOS of IRIS and lower segments of flare loops
- 3D flare loop reconstruction using data from AIA and EUVI
- Average loop viewing angle $\alpha = 52^{\circ}$

210"

Solar Y 180..

150"

- Field-aligned downflows of 50 110 km/s resulting from typical 30 70 km/s redshifts of G2
- The secondary component most-likely due to the condensation

Microwave & SXR emission during the flare I.

- Microwave emission observed by Expanded Owens Valley Solar Array (EOVSA)
- Sun-as-a-star emission peaked at ~17:37 UT
- Source above the flare loop arcade consistent with CSHKP model
- Brightness temperature spectrum: consistent with non-thermal electron source

Microwave & SXR emission during the flare II.

- Orange curve: time derivative of microwave flux measured between 2.4 and 5 GHz
- Blue curve: time derivative of SXR flux in I – 8 Å channel of GOES
- Quasi-periodic pulsations (QPPs) with period I – 3 min
- Si IV fit parameters averaged in the ribbon
- Intensity trend of G2 similar to EOVSA time derivative
- v_D trend of G2 similar to GOES time derivative

 Since G2 likely existed due to the chromospheric condensation, QPPs were generated by magnetic reconnection (see also Li, Ning, Zhang 2015)

Summary

- Si IV 1402.77 Å: quasi-periodic enhancements in moments of the entire profile, no counterpart in imaging data
- Fraction of profiles exhibited two components, primary and secondary one redshifted to ~ 70 km/s
- Very high correlation (ρ = 0.86) between the non-thermal broadening resulting from the moment analysis and the Doppler shift of the Gaussian fitting the secondary component
- Quasi-periodicities in the broadening of the entire profile due to plasma downflows (manifested in the secondary component) rather than broadening of the profile itself
- Speeds of the field-aligned downflows obtained by estimating viewing angles of flare loops correspond to high chromospheric condensation speeds recently found in numerical simulations
- Source of EOVSA microwave emission above the flare loop arcade, brightness temperature spectrum consistent with non-thermal electron source
- I 3 minute period QPPs visible in microwave and SXR time derivatives relatable to time evolution of the parameters of the Gaussian fitting the secondary component of the Si IV line
- ⇒ **QPPs** likely induced by magnetic reconnection

For more details see Lorincik et al. 202X (submitted) Frontiers research topic: 'Flare Observations in the IRIS Era: What Have We Learned, and What's Next?'

References

- Brannon, Longcope, Qiu 2015, ApJ 810, 4
- Chitta & Lazarian 2020, ApJL 890, L2
- De Pontieu & McIntosh 2010, ApJ 722, 1033
- De Pontieu et al. 2014, Sol. Phys. 290, 2733
- De Pontieu et al. 2021, Sol. Phys. 296, 84
- Jeffrey et al. 2018, Sci. Adv. 4 2794
- Kontar et al. 2017, Phys. Rev. Lett. 118, 155101
- Kowalski et al. 2017, *ApJ* 836, 12
- Kowalski et al. 2022, *ApJ* 928, 190
- Li, Ning, Zhang et al. 2015, ApJ 807, 72
- Lorincik et al. 202X, Frontiers, submitted
- Tian et al. 2015, ApJ, 811, 139