Hinode-15 / IRIS-12 / Prague

2022. 9. 20.

# Generation of umbral oscillations and subsurface structure of sunspots

### Kyuhyoun Cho

Bay Area Environmental Research Institute

Lockheed Martin Solar and Astrophysics Laboratory

## **Umbral Oscillations**



FISS Ca II 8542 Å 15-Jun-2015 17:07:52 UT

# **Umbral Oscillations**

- Sunspot umbral oscillations
  - Common phenomena
    - Intensity oscillations (e.g. Umbral flashes)
    - <u>Velocity oscillations</u>
  - Upward propagating slow waves in gravitationally stratified medium

(Centeno et al. 2006, Felipe et al. 2010, Jess et al. 2013 ...)

• Upward propagation

Wave source & propagation

- : source is below the photosphere
- Slow waves (magnetic field)
  - Field guided sound waves in  $\beta < 1$  region
  - Upward propagating (along the **B** field) with  $c_s$
- <sup>Frequency</sup> −• Gravitationally stratified medium ⇔ Acoustic cutoff
  - Change of the main period (5 → 3 min)



# Velocity Oscillation (T min region)

### • Internally excited oscillation patterns



# Velocity Oscillation (T min region)

- Internally excited oscillation patterns
  - 15-Jun-2017 0.10 210 0.05 205 0.00 -0.05 200 Event 1 -0.10 20:26:01 U 210 Solar Y (arcsec) 0 s 13 s 27 s 205 41 s 55 s 200 68 s 82 s 20 20 25 30 25 30 20 25 30 20 25 30 Solar X (arcsec)



• Parameters

Oscillation center

Cho et al. (2019)

(km

| $\mathbf{Tal}$ | bl | le 1. | Ο | bserval | ole | parameters | of | the | oscil | lation | patterns |
|----------------|----|-------|---|---------|-----|------------|----|-----|-------|--------|----------|
|----------------|----|-------|---|---------|-----|------------|----|-----|-------|--------|----------|

| Event number | Amplitude ( $\rm kms^{-1})$ | Coherent size $('')$ | Duration (s) | Apparent speed $(\rm kms^{-1})$ |
|--------------|-----------------------------|----------------------|--------------|---------------------------------|
| 1            | 0.07                        | 2.46                 | 434          | 14.5                            |
| 2            | 0.08                        | 2.46                 | 392          | 12.7                            |
| 3            | 0.08                        | 2.27                 | 490          | 16.6                            |
| 4            | 0.12                        | 3.80                 | 576          | 15.2                            |
| Mean         | 0.09                        | 2.74                 | 473          | 14.8                            |

## **Photospheric Features - UD**

- Oscillation center
  - Association with umbral dots (UDs)
    - Intensity variation
      - : brighten, darken, collide, break, move, disappear

Cho et al. (2019)



## **Photospheric Features - UD**

- Oscillation center
  - Association with umbral dots
    - Fast moving ~ 1 km s<sup>-1</sup>
      - \*cf. typical speed : 0.4 km s<sup>-1</sup> (Riethmüller et al. 2008)
    - Intensity variation
      - : brighten, darken, collide, break, disappear
    - Dark lanes



# **Discussion 1**

- Active umbral dots
  - Fast horizontal motion
  - Upward and downward motion (Ortiz et al. 2010; Watanabe et al. 2012)
  - Morphological change
  - ⇒ Vigorous convective motion inside umbra
  - Spatially & temporally associated with the concentric oscillation patterns at the temperature minimum region

⇒ Wave generation mechanism is related to the convective motions inside umbra. (Internal source)



# Summary

- Origin of 3-min umbral oscillations
  - Convective motion inside sunspot umbra

# Across / Along the Field Line

- 3-minute umbral oscillations
  - Upward propagating slow MHD waves in gravitationally stratified medium
  - Horizontal propagation in umbra ↔ Upward propagating slow waves







# **Horizontal Apparent Waves**

- Horizontal propagation in umbra ⇒ Apparent wave patterns
  - From a point source
  - Fast waves propagation
  - Difference in arrival time at the  $\beta \simeq 1$  layer
  - Mode conversion: Fast ⇒ Slow waves (Cally 2001; Schunker & Cally 2006)
  - Slow waves propagation along the **B** fields
  - Observed at the Fe I 5435 Å line formation height



# Sunspot Interior Model

### Fast wave speed

• 
$$v_f = \left(\frac{1}{2}(c_s^2 + v_A^2) + \sqrt{(c_s^2 + v_A^2)^2 - 4c_s^2 v_A^2 \cos^2 \theta}\right)^{1/2}$$
  

$$\frac{\sqrt{\gamma P_{aas}}}{B}$$

• 
$$c_s = \sqrt{\frac{\gamma P_{gas}}{\rho}}, \quad v_A = \frac{B}{\sqrt{4\pi\rho}}$$

- Wilson depression: 600 km
- $\rho(z)$ ,  $P_{gas}(z)$  : Maltby E model (Maltby et al. 1986) + Solar interior model (Cox 1999)
- B(z)
  - GST/NIRIS data (I, Q, U, V) •
    - + Mline-Eddington inversion (vector magnetogram) ⇒ 2480 G at 90 km
  - $\Delta B / \Delta z = -1 \text{ G km}^{-1}$  (Borrero, & Ichimoto 2011)

• 
$$\beta(z) = \frac{8\pi p_{gas}(z)}{B^2(z)} = \frac{2}{\gamma} \frac{c_s^2(z)}{v_A^2(z)}$$

•  $\beta(z = 13 \ km) = 1$ 

### Fast waves propagation: Eikonal method

(Weinberg 1962; Moradi & Cally 2008)

#### Cho & Chae (2020) NIRIS B Strength 15-Jun-2017 20:32:03 UT 3000 210 Solar Y (arcsec) 2000 205 1000 200

25

Solar X (arcsec)

30

B (Gauss

12

35



195

20

# **Effect of Source Depth**

- Internally excited oscillation patterns
  - Horizontal apparent wave speed
    - ➡ Information about the source depth !



# **Effect of Source Depth**

- Horizontal apparent wave
  - Deeper source depth
     ⇒ Faster
  - Distant from the oscillation center
     ⇒ Deceleration





## **Measurement of Horizontal Propagation**

- Trace a blueshift position
  - Azimuthally averaging
  - Fit sinusoidal function  $v_{Dop} = a_0 \sin(a_1 x + a_2) + a_3$
  - Minimum position  $a_1x + a_2 = 3\pi/2$
  - Receding from the oscillation center





# **Horizontal Propagation**

• Trace blue / redshift positions of 5 ripples



# **Source Depth**

- Depth estimation : 1000  $\, \backsim \,$  2000 km
- Similar to the model calculations **Time - Distance Plot** 4000  $\Rightarrow$  Deceleration Distance from the Oscillation Center (km) 3000 2000 Ripple 1 : 1686 km 1000 Ripple 2 : 1645 km Ripple 3 : 1401 km Ripple 4 : 1792 km Ripple 5 : 1574 km Cho & Chae (2020) 0 20 40 60 80 100 120 140 17 Time (s)

## **Previous Studies**

- Depth estimation : 1000  $\sim$  2000 km
- Consistent with previous studies



# Summary

- Origin of 3-min umbral oscillations
  - Convective motion inside sunspot umbra
- Apparent propagating speed of 3-min umbral oscillations
  - Estimation of source depth
- Distribution of convection cells below the sunspot?
   ⇒ Sunspot subsurface structure !

# **Convection Cells**



- Convection: **B** Field region << Field free region
- Magneto-convection Vs Convection in the field free hot gas
- No information about the absolute value of the convection occurrence rate

# **Merging Sunspot Case**



- Distribution of the oscillation centers (convection cells)
  - ⇒ Clue for sunspot's subsurface structure

# **Observational Data**

Cho et al. (2021) Merging sunspot observed by (b) IRIS SJI Mg II 2796 Å 2015-12-18 00:00 (a) HMI Intensity 2015-12-15 00:20:38.70 UT 100 30 2015-12-15 00:20:38 UT 80 Time (UT) 15 Solar Y (arcsec) 2015-12-17 00:00 Solar Y (arcsec) 60 0 40 -15 2015-12-16 00:00 20 -30-30 -1515 30 0 0 -Solar X (arcsec) 0 20 40 60 80 100 Solar X (arcsec) -30 -15 15 30 0

Solar X (arcsec)

### **Examples of Oscillation Centers**



# **Positions of Convection Cells**

- Merging sunspot observed by IRIS SJI Mg II 2796 Å
- Analyzing the motion of umbral flashes
- Determine the position of oscillation centers
- Role of the convergent interface? probably not!
- Below the umbra similar to the convergent interface

⇒ supports to the cluster model





# Summary

- Origin of 3-min umbral oscillations
  - Convective motion inside sunspot umbra
- Apparent propagating speed of 3-min umbral oscillations
  - Estimation of source position
- Distribution of convection cells below the merging sunspot
   ⇒ supports to the cluster model.