Coronal Condensations in Hybrid Prominence/Coronal Rain Structures

Leping Li

lepingli@nao.cas.cn

National Astronomical Observatories (NAO)

Chinese Academy of Sciences (CAS)

Outline

- 1. Introduction
- Coronal condensation (CC) facilitated by magnetic reconnection (MR) between open and closed magnetic structures (Li+ 2018a, 2018b, 2019, 2020, 2021a, 2021b, 2021c, Chen+ 2022)
- 3. Summary

1. Introduction

- CC of cool plasma out of the hot corona is widely investigated, best seen at the solar limb. (see reviews in Antolin 2020 and Antolin & Froment 2021, and references therein)
- CC is based on the thermal properties of the plasma alone. Only the loss of thermal equilibrium between heat input, heat conduction, and radiative losses causes the plasma to cool catastrophically. (Müller+ 2003, Xia & Keppens 2016, et al.)
- **CC** is independent of the (evolution of the) coronal magnetic field.
- □ Solar activities, closely associated with CC, include the prominence and coronal rain (CR).

Li+ 2016, Nature Physics, 12, 847

MR

MR shows the reconfiguration of magnetic field geometry.

It is used to explain the rapid release of magnetic energy, and its conversion to other forms, e.g., thermal and kinetic. (Priest & Forbes 2000, Lin & Forbes 2000)

Formation of Prominences

Prominence formation includes the formation of (1) magnetic structure and (2) mass of prominences, respectively.

- MR causes a helical magnetic structure with numerous dips of prominences. (Pneuman 1983, van Ballegooijen & Martens 1989, et al.)
- **CC** of hot plasma trapped in the helices forms the mass of prominences. (Pneuman 1983, Xia+ 2014, et al.)

Coronal Cloud Prominences

Coronal cloud prominences, also referred to as "Coronal spiders" and "funnel prominences". (Liu+ 2012, Vial & Engvold 2015)

 Table 9.1 Comparison of channel prominences with coronal cloud prominences

Channel prominences with spine and barbs	Coronal cloud prominences often above invisible arcs
Low < 50,000 km	High (up to ~200,000 km)
Bright (1,011 particles/cc)	Faint ($\sim 10^{10}$ particles/cc)
Seen against disk in Ha	Rarely seen against disk in Ha
Reveal counterstreaming in spine and barbs	Only down flows from unknown sources
Located in filament channels	Not in filament channels
Mass input from injection sites where magnetic fields are cancelling	Mass input from previously ejected filament mass or CME's—two of several hypotheses
Lie above polarity reversal boundaries in filament channels	Might lie within coronal loop systems above separatrix surfaces
Have chirality (handedness)	No known chirality (handedness)
Often end lifetime by erupting with a CME	Rarely erupt; large ones form after a CME with an erupting filament

Vail & Engvold (2015)

- They differ from the common, channel prominences in several aspects, and disappear from drainage along curved trajectories resembling CR.
- The formation process is not fully understood.

Two Types of CR

Flare-driven post-flare CR

Thermal conduction front/beamed nonthermal particles

- => chromospheric evaporation
- => thermal non-equilibrium => CC => CR

Antolin+ (2015)

Non-flare driven active region CR

Heating at/around the loop endpoints => chromospheric evaporation => thermal instability => CC => CR

- □ Both CRs occur along magnetically-closed field lines;
- Magnetic field evolution and thermal evolution are treated separately for both formation mechanisms of the prominences and CRs.
- The magnetic and thermal evolution has to be treated together and cannot be separated, even in the case of catastrophic cooling. (Li+ 2018a, 2018b, 2019, 2020, 2021a, 2021b, 2021c, Chen+ 2022)

2.1 MR-CC between Open and Closed Structures

MR between open and closed structures, and CC as a coronal cloud prominence (Li+ 2018a, ApJ, 864, L4)

CC and Its Downflows As CR

Schematic Diagrams of MR-CC

2.2 Quasi-periodic Fast Propagating Magnetoacoustic Waves during MR-CC

Disturbances, originating from the **MR** region, propagate upward across the dip region of loops L1 (Li+ 2018b, ApJ, 868, L33).

Propagating Disturbances

- The disturbances represent the fast-propagating magnetoacoustic waves.
- Magnetic energy is mainly converted into wave energy by **MR**.

2.3 Repeated MR-CC Events

 Table 1

 General Information on Repeated Coronal Condensations and MRs between Loops from 2012 January 16 to 20

					AIA Emission		EUVI-A	Emission	
Event	Section	Start Time	End Time	171 Å	131 Å	304 Å	171 Å	304 Å	
1	3.1	Jan 16 04:00 UT	Jan 16 20:00 UT	Yes	Yes	No	Yes	No	
2	3.2	Jan 16 20:30 UT	Jan 17 04:30 UT	Yes	Yes	Yes	Yes	Yes	
3	3.3	Jan 17 07:00 UT	Jan 17 22:00 UT	Yes	Yes	Yes	Yes	Yes	
4	А	Jan 17 22:00 UT	Jan 18 10:00 UT	Yes	Yes	Yes	Yes	Yes	
5	В	Jan 19 01:00 UT	Jan 20 02:30 UT	Yes	Yes	Yes	No	No	
6	С	Jan 20 03:00 UT	Jan 21 03:00 UT	Yes	Yes	Yes	No	No	

From the same magnetic structure system, in 5 days, 15 similar **MR-CC** events occur repeatedly.

- Coronal cloud prominences thus form.
- The CC remains for 30 min to 15 hr, and then rain down to the chromosphere as CR. (Li+ 2019, ApJ, 884, 34)

Is MR-CC a common phenomenon in other places?

L1 and coronal condensations are simultaneously ob-

served in AIA 171 Å and 304 Å images, respectively.

Number	Date	Time (UT)	Position				
1	January 1	00:30	N20 E90				
2	January 1	18:36	S05 W90				
3	January 1	19:10	N30 W90				
4	January 1	20:30	S10 W90				
5	January 2	00:30	S05 W90				
6	January 2	04:05	N30 E90		Table D1	(continued)	
7	January 2	09:05	N20 E90			· · ·	
8	January 2	14:00	S05 W90	Number	Date	Time (UT)	Position
9	January 3	01:30	N20 E90	49	January 17	11:30	S30 E90
10	January 3	11:10	N00 E90	50	January 17	22:02	S50 W90
11	January 3	13:55	S20 E90	51	January 18	05:45	S50 W90
12	January 4	04:20	N20 E90	52	January 10	13:40	S20 W00
13	January 4	15:05	S15 E90 S10 W90	52	January 19	19.40	S10 E00
15	January 5	00.30	N10 W90		January 19	10.10	S10 E90
16	January 5	07:40	S10 W90	54	January 20	10:18	510 E90
17	January 5	09:06	S05 W90	55	January 20	10:46	N05 E90
18	January 5	14:10	S05 W90	56	January 20	15:48	S20 W90
19	January 6	05:02	N05 W90	57	January 21	03:50	N05 E90
20	January 6	08:38	S10 W90	58	January 21	05:30	S20 W90
21	January 6	13:40	S05 W90	59	January 21	11:30	S10 E90
22^{*}	January 7	02:44	S10 W90	60	January 22	03:50	N40 E90
23	January 7	05:25	S20 W90	61	January 22	16:17	S10 E90
24	January 7	13:24	S05 W90	62	January 22	15:05	S20 W90
25	January 7	17:14	N40 W90	63	January 23	11:26	S20 W90
26	January 7	19:59	S10 W90	64	January 23	12:52	N60 W90
27	January 8	01:40	S10 W90	65	January 23	17:25	N20 W90
28	January 8	11:30	S40 W90	66	January 24	12:56	S10 W90
29	January 9	03:35	S40 W90	67	January 24	17:44	N05 E90
30	January 9	07:40	S30 W90	68	January 21	21:47	N80 E90
31	January 10	05:30	N40 E90	60	January 26	06.42	N20 W00
32	January 10	07:26	N40 E90	09 70	January 20	15 40	N20 W90
33	January 10	10:18	S10 E90	70	January 27	15:40	S10 E90
*	January 10	14:08	510 £90	71	January 28	23:14	N40 E90
35	January 10	14:40	N40 E90	72	January 28	23:44	N15 W90
30 27	January 10	22:30	N60 W90	73	January 29	05:14	N45 E90
ین *	January 11	10.10	Neo Weo	74	January 29	08:14	S20 E90
38	January 11	12:18	N30 W90	75	January 29	08:44	N10 W90
39	January 11	21:33	515 W90	76	January 30	01:20	S55 E90
40	January 12 January 19	11:08	S10 W90	77	January 30	19:29	N02 E90
41	January 12	00.43	N40 W90	78	January 31	02:00	N20 W90
43	January 13	11:58	S05 W90	79	January 31	02:45	N60 E90
44	January 14	00:00	N40 W90	* 101		. D:	
45	January 14	21:47	N49 E90	The events	displayed in F	igure D1.	
46	January 15	10:18	N40 E90	Note—The tl	hird column sł	nows the time	when the loop

22:31

22:30

January 15

January 16

48

S10 E90

N10 E90

79 Similar Events in 2012 January

- We roughly check the AIA images in January 2012 above the solar limb using 15 minute time cadence.
- 79 similar events are detected in the month alone at different positions and times.
- Three cases among them are displayed, see lower figure.

This kind of MR 1s a common phenomenon in the corona. **CC** of coronal plasma always takes place during this kind of MR.

2.4 Chromospheric CR Originating from MR-CC

General information of CR event (green rectangle shows the FOV of IRIS SJIs) (Li+, 2020, ApJ, 905, 26)

IRIS CR Event

The animation (left) and time slice (right) show the CR.

Spectral Information of the IRIS CR

Coronal plasma cools further down to ~0.01 MK (Mg II k at 2796 Å).

MR-CC Observed by AIA

MR (left) and CC (right)

Spatial-temporal Relation between MR-CC and IRIS CR

■ IRIS **CR** originates from MR-CC. ■ The new and alternative formation mechanism for **CR** by interchange **MR** is suggested to explain some **CR** events in transition region and chromospheric lines.

2.5 On-disk MR-CC Events

- 2010 September to 2011 September, when theviewing directions of STEREO A and B are mostlyperpendicular to that of SDO.
- Evolution of loops and plasma out of the western (eastern) limb in the FOV of STEREO A (B) EUV images.
 - MR-CC events from 2011 July 14 to 15 are chosen. (Li+, 2021a, ApJ, 910, 82)

General Information of Structure System

MR-CC Observed by STEREO (Left) and SDO (Right)

On-disk MR-CC events are identified. Bright emission appears in AIA 171 and 131 Å images, MR-CC shows dark absorption feature on the disk.

2.6 Revisiting The Formation Mechanism of CR from Previous Studies

Table 1: General information of the coronal rain events from previous studies

No	References	Date	Source	Coordin	ate Position	Observation	ns Original	SDO Revised	1		Table 1:	: (Contini	ied)					
	References	Date	region	cooruili	ale i UsitiOli	50501 vario	FM	FM	1									
1	Li et al. (2021a)	2011.07.14	1 Near	\$40 W	02 On-disk	SDO:	FM-II-2	Yes -	No.	. Reference	Date	Source	Coordinat	e Position	Observations	Original	SDO	Revised
-		-07.15	AR 1125	0	Off-limb	STEREO					ł	region				FM		FM
2	Kumar et al. (2021)	2015.04.20) Plage	N07 E9	0 Off-limb	SDO	FM-II-1;	Yes -	24	Antolin et al. (2012)	2008.06.10	AR 10998	8 S07 E63	On-disk	SST	FM-II-1	No	_
		2015.04.2	I AR 1233	3 N20 E9	90		FM-II-2		21	Antonii et ul. (2012)	2008.06.11	AD 10009	2 S00 E46	On disk	551	1 101 11 1	110	
		2015.01.09	AR 1226	1 S11 E9	00						2006.00.11	AR 10990	010 E40	0 11	0.077		v	
3	Li et al. (2020)	2013.10.18	8 Quiet Su	n S45 E9	0 Off-limb	SDO;	FM-II-2	Yes -			2010.06.27	AR 11084	1 S19 E65	On-disk	551	FM-11-1	Yes	
		-10.19				IRIS					2010.06.28	AK 11084	+ S19 E45	_				
4	Ishikawa et al. (2020)	2014.04.24	4 AR 1204	2 N22 W	32 On-disk	SDO; IRIS	S FM-II-1	Yes -			2010.07.06	AR 11084	\$19 W60	1				
5	Froment et al. (2020)	2017.08.28	8 AR 1267-	4 N10 E9	0 Off-limb	SDO;	FM-II-1	Yes FM-II-1	25	Antolin & Rouppe van der Voort (2012)	<u>/)</u> 2009.05.10	AR 11017	7 N18 E90	Off-limb	SST;	FM-II-1	No	-
		-08.30	<u> </u>			SST									Hinode			
6	Li et al. (2019)	2012.01.10	6 Quiet Su	n N50 W	90 Off-limb	SDO;	FM-II-2	Yes -	26	Kamio et al. (2011)	2010.10.31	AR 11117	7 N20 W90) Off-limb	SDO	FM-II-1	Yes H	FM-II-2
_	W. L	-01.20	LD 1010	010 20	0.0001: -	STEREO		V DUC	4		2010.11.05	AR 1112) N38 W09	On-disk	SDO:	FM-II-1	Yes	-
/	Kohutova et al. (2019)	2015.12.0	AR 1246	8 S13 E9	Off-limb	SDO; IRIS	5 FM-II-1	Yes FM-II-1						en alon	Hinode			
δ	Mason et al. (2019)	2015.04.10	5 Sharp 543	1 NUU W	90 Off-limb	SD0	гм-II-l; гм II-2	res -	27	Antolin at al. (2010).	2006 11 00	AD 1000	SUC MIGO	Off limit	Lingda	EM II 1	Nc	
		2015.05.0	+ AK 1233.	8 N04 W	90		f M-11-2		27	Antoin et al. (2010);	2006.11.09	AK 10921	500 W80	OII-IIM	Hinode	г №1-11-1	10	-
9 Va	ashalomidze et al. (2019)	2010.02.2	Near	N40 F0	0 Off-limb	SDO	FM-II-1	Yes FM-II-1		Antolin & Verwichte (2011)	'							
	asiaioninaze et al. (2017)	-10.07	AR 1131	2			1 10 11-1	100 1 101 11-1	28	Zhang & Li (2009)	2007.05.10	Quiet Sur	n S02 E90	Off-limb	STEREO;	FM-II-1	No	-
10	Li et al. (2018a,b)	2012.01.19	Quiet Su	n N50 W	90 Off-limb	SDO	FM-II-2	Yes -	1 🗋		'				Hinode			
11	Schad (2017, 2018)	2015.12.0	AR 1246	8 S00 E9	0 Off-limb	SDO;	FM-II-1	Yes FM-II-1	; 29	O'Shea et al. (2007)	2003.03.21	AR 10314	4 S13 W90	Off-limb	TRACE;	FM-II-1	No	-
						IRIS; DST	Γ	FM-II-2							SOHO			
12	Auchère et al. (2018)	2012.07.23	3 AR 1153	2 S00 E9	0 Off-limb	SDO	FM-II-1	Yes FM-II-1	; 30	De Groof et al. (2004, 2005):	2001.07.11	AR 9538	N17 E90	Off-limb	SOHO:	FM-II-1	No	-
		-07.25						FM-II-2		Müller et al. (2005)					BBSO			
13	Lacatus et al. (2017)	2015.03.1	AR 1229	7 S10 E2	0 On-disk	SDO; IRIS	S FM-I	Yes -	31	Brocine (2003)	2001.06.15	AR 0502	\$26 E49	On-dieb	SOHO	FM-I	No	
14 Verv	wichte & Kohutova (2017)2014.08.2	7 AR 1214	1 N20 W	90 Off-limb	SDO; IRIS	; FM-II-1	Yes FM-II-1	20	Diosius (2003)	2001.00.13	AD 0004	520 E40	Off-uisk		TMI-1	NU NI	-
						Hinode			32	Schrijver (2001)	2000.05.26	AR 9004	N11 W83	Off-limb	TRACE	FM-11-1	NO	-
15	Verwichte et al. (2017)	2012.04.10	6 AR 1146	1 N17 W	90 Off-limb	Hinode	FM-II-1	Yes FM-II-1			1999.05.29	AR 8531	N17 E90					
16 Sci	cullion et al. (2016, 2014)	2012.07.02	2 AR 1151:	5 S17 E1	4 On-disk	SDO; SST	FM-II-1	Yes -	_									
		2012.07.0	AR 1151:	5 S20 E2	23 On-disk	SDO;	FM-I	Yes -										
17 17 1	· • • N · · • · (2016	2011.09.24	4 AR 1130.	2 N10 E6	00	SST		V FM II 1	-	120	- f -		. 1					-
1/ Kon	utova & verwichte (2016)2014.08.23	AD12151	513 E9	OII-limb	SDU; IKIS	; FM-11-1	res FM-II-1	-	🗖 38 re	этег	ree	ed 1	pa	per	'S ()ľ	ו
19	Pages at al. (2015)	2014.05.0	AR1215	1 \$20 \$20	00 Off limb	Finode	2	Vac EM II 2	_					L	I			
10	Artolin et al. (2015)	2014.05.0	AR 1204	+ 520 WS	90 OII-IIIID	SDU; IKE	5 - ЕМП 1	Vec EM II 1										
17	Antonni et al. (2015)	2010.00.20	AR 1100	3 S15 W	2 Off-limb	SDO- IRIS	· ·	105 1101-11-1			л т	\mathbf{a}	ΟΙ		<i>к</i> тт	1		
		2013.11.2,	/ AK 11/0.	5 515 11,	/0 011-11110	Hinode	',				/ _ `	• 7	X I	H IV	/1-11	_	•	1
20 Va	ashalomidze et al. (2015)	2012.02.22	2 AR 1142	0 N10 E9	0 Off-limb	SDO:	FM-II-1	Yes FM-II-2				, –			_		,	'
						STEREO												
21	Liu et al. (2015)	2014.05.09	AR 1205	1 S17 W9	90 Off-limb	SDO; IRIS	S FM-II-1	Yes FM-II-1	1	、								
22	Ahn et al. (2014)	2011.09.29	AR 1130	5 N12 E1	4 On-disk	SDO; NST	; FM-II-1	Yes -	1	255)								
						STERFO	1		1	4JJ								

SDO

Yes FM-II-2

2010.11.26 AR 11126 S32 W90 Off-limb

Liu et al. (2012)

23

Results

- □ The CR events occurred before the launch of the SDO are not revisited.
- □ The on-disk **CR** events are not revisited.
- The quiescent CR events that have been identified to occur along open structures and the flare-driven
 CR events are not revisited.

- At last, 15 **CR** events, mostly suggested to form along non-flaring AR closed loops due to thermal nonequilibrium, are selected to recheck their formation mechanism.
- After investigating the evolution of these 15 CR events and their magnetic fields and context coronal structures, we find that 6 of 15 events could be totally or partially explained by the formation mechanism for quiescent CR along open structures facilitated by interchange MR.

An Example: MR-CC event on 2014 May 1

In this active region, Reeves et al. (2015) studied the filament eruption and the **MR** between filament and open structures.

MR (upper-left), CC (right), and magnetic fields (lower-left) in a fan-spine active region (Mason+ 2019)

2.7 MR-CC as The Source of Supersonic Downflows Above A Sunspot

Supersonic downflows observed by IRIS (Chen+ 2022, A&A, 659, A107)

MR-CC Observed by STEREO (Left) and SDO (Right)

Spatial and temporal relationship between the **CR** by **MR-CC** and the supersonic downflows shows that the supersonic downflows originate from the **MR-CC**.

2.8 Formation of a (Channel) Filament by MR and CC

General information (Li+ 2021c, ApJL, 919, L21)

Tether-cutting **MR** forming a sigmoid & Chromospheric evaporation

Filament Formation by CC

Cooling and **CC** of the Sigmoid

Sigmoid and the subsequent filament formed by MR and CC

3. Summary

- A new and alternative formation mechanism for **CR** facilitated by **MR** between open and closed magnetic structures is proposed (Li+ 2018a, ApJL, 864, L4).
- Magnetic energy is mainly converted to wave energy by **MR** (Li+ 2018b, ApJL, 868, L33).
- Repeated MR-CC events are identified, suggesting that they are common phenomena in the solar corona (Li+ 2019, ApJ, 884, 34).
- CR formation mechanism by MR-CC can be used to explain some CR events with curved loop trajectories in the chromospheric and transition region channels (Li+ 2020, ApJ, 905, 26; Li+ 2021b, RAA, 21, 255).
- On-disk **MR-CC** events are investigated (Li+ 2021a, ApJ, 910, 82).
- MR-CC can be used to explain the supersonic downflows above the sunspot (Chen+ 2022, A&A, 659, A107).
- Filament formed by tether-cutting **MR** between loops and **CC** of chromospheric evaporated hot plasma are reported (Li+ 2021c, ApJL, 919, L21).

Thank you!