ELEMENTAL COMPOSITION DIAGNOSTICS FOR HINODE/EIS

Hinode 15 / IRIS 12

Natalia ZAMBRANA PRADO S. Parenti & the ISSI team #418 P. YOUNG, T. KUCERA, É. BUCHLIN, G. PELOUZE NASA Goddard Space Flight Center Institut d'Astrophysique Spatiale

The FIP effect

FIP bias map of the Solar corona, Brooks et al. (2014)

FIP biases measurements give constraints on the source of heliospheric plasma

Linking the Sun to the Heliosphere

FIP bias diagnostics: Linear Combination Ratio (LCR)

Zambrana Prado & Buchlin (2019)

- brana Prado & Duchini Course Starting from the relative FIP bias: $\frac{f_{X_{\rm LF}}^{bias}}{f_{X_{\rm HF}}^{bias}}$ =
 - $I_{
 m LF}$ $\langle C_{
 m LF},$

= constant

- We select linear combinations of lines from low- and high-FIP elements, one from low-FIP element(s) and one from high-FIP element(s)
- We optimize the coefficients of these linear combinations to get the ratio of "scalar products" to be as closed as possible to 1, for different reference DEMs

In practice : Hinode/EIS

Application of the LCR method to spectroscopic observations of a sigmoidal anemone-like Active Region inside an equatorial Coronal Hole, previously studied in Baker et al. (2013).

Following DEMinversioncor $\frac{f_{\rm Si}}{f_{\rm S}}$ $\frac{f_{\rm S}}{f_{\rm S}}$

Linear combinations $f_{Si \& Fe}$

Fe XII intensity map of the AR observed with EIS on 17 October 2007 at 02:47 UT, Baker et al. 2012

Data courtesy of D. Baker

Zambrana Prado & Buchlin, 2019

In practice : Hinode/EIS

Application of the LCR method to spectroscopic observations of a sigmoidal anemone-like Active Region inside an equatorial Coronal Hole, previously studied in Baker et al. (2013).

Following DEM inversion	Linear combinations			
$f_{ m Si}$	$f_{ m Si}$ & Fe			
$\overline{f_{ m S}}$	$f_{ m S}$			
Similar structuros	with onbancod o			

★ Similar structures with enhanced or depleted relative FIP bias in both maps.

White pixels: warm or dead pixels + too noisy to fit the spectral line properly

6

Reanalyzing past observations with the LCR method

		(A)	(K)
	S VIII	198.553	5.9
1	Si VII	275.361	5.8
	Si VIII	276.85	5.9
	FeX	184.537	6.0
	Fe XI	180.401	6.1
	SX	264.23	6.2
2	SiX	258.374	6.1
	Fe XIII	202.044	6.2
	Fe XIV	264.788	6.3
	S XII	288.434	6.3
3	S XIII	256.685	6.4
	Fe XV	284.163	6.3
	Fe XIV	211.317	6.3
	Fe XVI	262.976	6.4
л	Ar XIV	194.401	6.5
4	Ca XIV	193.866	6.5
	E-MA	201102	62

Wavelength

log T_{max}

Set # Ion

Parenti et al. (including NZP), 2021

Reanalyzing past observations with the LCR method

Sets 1, 2 & 3: Measurement of the relative bias of iron and silicon to sulfur Set 4 : Calcium and iron versus argon

Sets with increasing temperature ranges

a posta en

Parenti et al. (including NZP), 2021

Set #	Ion	Wavelength	log T
oct il	1011	(Å)	(K)
	S VIII	198.553	5.9
1	Si VII	275.361	5.8
	Si VIII	276.85	5.9
	FeX	184.537	6.0
	Fe XI	180.401	6.1
	SX	264.23	6.2
2	SiX	258.374	6.1
	Fe XIII	202.044	6.2
	Fe XIV	264.788	6.3
_	S XII	288.434	6.3
3	S XIII	256.685	6.4
	Fe XV	284.163	6.3
	Fe XIV	211.317	6.3
	Fe XVI	262.976	6.4
_	Ar XIV	194.401	6.5
4	Ca XIV	193.866	6.5
	FeXV	284,163	6.3

Reanalyzing past observations with the LCR method

Sets with increasing temperature ranges

Sets 1, 2 & 3: Measurement of the relative bias of iron and silicon to sulfur Set 4 : Calcium and iron versus argon

Set	CL1	CL2	CL3	CO1	CO2	HOT	HOT2
1	$2.2^{+0.8}_{-0.7}$	$2.7^{+0.9}_{-0.8}$	$2.7^{+0.9}_{-0.8}$	$2.0^{+0.7}_{-0.6}$	$1.8^{+0.6}_{-0.6}$	$1.0\substack{+0.4\\-0.3}$	$0.9\substack{+0.3\\-0.3}$
2	$1.9\substack{+0.6 \\ -0.5}$	$1.6\substack{+0.5 \\ -0.4}$	$2.0^{+0.6}_{-0.5}$	$2.0^{+0.6}_{-0.5}$	$2.0^{+0.6}_{-0.5}$	$1.7\substack{+0.5 \\ -0.5}$	$1.9\substack{+0.6\\-0.5}$
3	$1.3\substack{+0.7 \\ -0.1}$			$2.5^{+1.5}_{-0.0}$	$1.8^{+1.0}_{-0.0}$	$1.8^{+1.0}_{-0.0}$	$1.4_{-0.0}^{+0.9}$
4				$3.1^{+1.6}_{-0.3}$	$3.3^{+1.5}_{-0.2}$		

Parenti et al. (including NZP), 2021

Sources of error

Specific to the LCR method :

- ★ Minimized cost function is not equal to zero.
- ★ The DEMs in the map are different from the ones we used for the optimization.
- ★ Mixing of elements with different FIP biases

Other sources of error :

- ★ Radiometry
- ★ Atomic physics
- ★ Radiative transfer

-> There is a difference between the **real relative FIP bias** of the plasma f_p and the **inferred relative FIP bias** obtained from observations f_i

Determining uncertainties from the probability distribution P(f_p | f_j)

Determining uncertainties from the probability distribution P(f_p | f_i)

Moving forward: EIS & Solar Orbiter

- ★ EIS has more LF lines whereas SPICE has more HF lines
- ★ Coordinated observations allow for a better constraint on the higher temperature range for SPICE and provide Doppler maps.
- ★ EIS observes more iron lines which is one of the heavy ions SWA-HIS measures.
- ★ Possibility to understand what is happening at different temperatures and heights.

What we have

Spectroscopic observations

How

A new FIP bias measuring method with:

- ★ No DEM Inversion
- ★ Optimized linear combinations of spectral lines

What we want to do

All routines in Python available at https://git.ias.u-psud.fr/nzambran/fiplcr

- ★ Create accurate FIP bias maps systematically and semi-automatically
- ★ Re-analyze past observations
- ★ Design observations : which lines should we use ?

Conclusions

- FIP bias measurements give **constraints on the source of heliospheric plasma** (even if they are not enough to identify it: Stansby et al. 2020).
- New diagnostics at higher temperatures.
- New sets of spectral lines will add elemental composition diagnostics to previously carried out studies : **new EIS composition data product**.
- Application to **SPICE** observations.

Thank you for listening

zambranaprado@cua.edu natalia.zambranaprado@nasa.gov