Study of the relation between the reversed granulation and the gas compression/expansion

taken by Hinode-SOT/SP

Continuum Intensity (Surface layer)

Line core Intensity (middle layer)

Takayoshi Oba

Mark Cheung,² Yusuke lida,³ Toshifumi Shimizu⁴ 2022.9.20 (Tue) @ Hinode-15/IRIS-12

1. National Astronomical Observatory of Japan

2. CSIRO

3. Graduate School of Science and Technology, Niigata University

4. Institute of Space and Astronautical Science / Japan Aerospace Exploration Agency

What is Reversed Granulation?

Intensity pattern at the middle layer of the photosphere (height > \sim 130km)

Reversed granulation indicates:

Gas material, when moving from granule to intergranular lane, is somehow heated up.

lane

Several candidates to explain the reversed granulation

Magnetic field (Unlikely?)

Leeanarrts et al. 2005

- It could be seen in internetwork region
- Non-magnetized numerical simulation also reproduces it

p-mode, internal gravity wave

de Wijn 2009 Rutten 2004

y [Mm]

by Numerical Simulation

0 1 2 3 4 5 0 1 2 3 4 5 x [Mm] x [Mm]

Gas-compression, Radiative heating Nordlund et al. 1985

- Observation shows they are cospatial with the reversed granulation pattern

- Gas is compressed in intergranular lane by surrounding granular flow
- Gas in intergranular lane at the middle height is heated by radiation

$$\frac{D \ln T}{Dt} = -(\gamma_3 - 1)\nabla \cdot \boldsymbol{v} + \left(\frac{\partial \ln T}{\partial s}\right)_{\mathcal{Q}} \frac{Q_{\text{rad}}}{\varrho T}$$
compression/expansion
Radiation

Several ideas are proposed but not conclusive, due to mainly lacking their observational proofs

Observational Studies in the Past

Balthasar et al. 1990

Correlation coefficient between I_{cont} and I_{core} (typically -0.2 ~ -0.3)

Issue No reports for the relation between horizontal flow field (gas compression/expansion) and the reversed granulation, so far

• Doppler analysis at the solar Limb

This study

Observation and Analysis

Hinode/SP

Spatial resolution: 0.3" Spatial sampling: 0.15"x0.16" Region: [0", 760"]*

%In the LOS, 63% of horizontal flow is reflected

Dataset 1

FOV: 4.5" x 61" Cadence: 30 sec

Dataset 2

Evaluation for Expansion/Compression

Intensity (@Line core) vs. Gas compression/expansion: 0

0.64

Result 2: Average of Temperature variation as a function gas compression/expansion

* Temperature: determined from intensity via the Planck function

Temperature variation at the middle photosphere

It is determined by the act of compression/expansion

Compression increases the temperature, while expansion does not well decrease the temperature

ror result 2: remperature variation due to gas compression / Expansion

Compression: γ_3 =1.16, Expansion: 1< γ_3 <1.16

Compression increase the temperature, while expansion does not well decrease the temperature

- Radiative heating above granule contributes to heat partially

and/or Nordlund et al. 1985 Cheung et al. 2007

- Change of γ_3 in granules and intergranular lanes

Summary

Reserved granulation

Temperature enhancement when moving from a granule to an intergranular lane

Candidates Gas compression/Expansion, p-mode, internal gravity wave, ...

This study: Horizontal flow field derived from observations is used for the first time to evaluate the gas compression/expansion

Observationally support the gas compression/expansion contributes to create the reversed granulation

%Radiation may partially heat the gas above granules

Future works

- Quantitative evaluation of γ_3 in granule and intergranular lane using numerical simulation

- Multiple Doppler analysis in coordination with the Solar Orbiter

