Coronal magnetic fields measurement using MIT method

Wenxian Li

Key Laboratory of Solar Activity, National Astronomical Observatories Chinese Academy of Sciences, China

2022.09.19-23 Hinode-15/IRIS-12

Collaborators:

Atomic method, theory and calculations: Lund University: Tomas Brage and LUMCAS group Queen's University Belfast: Connor Balance

Laboratory measurement: Fudan University: Shanghai-EBIT laboratory

Solar observations and applications: High Altitude Observatory: Philip G. Judge University of Michigan: Enrico Landi Peking University: Hui Tian group National Astronomical Observatories: Huairou Solar Observing Station

Why coronal magnetic field?

solar cycle, structuring, solar eruptions, coronal heating

Coronal magnetic field measurement is still challenging weaker field, higher temperature

How to measure the coronal magnetic field?

X (arcsec)

Spectropolarimetry of the visible and near-infrared coronal emission lines (Lin et al. 2004, ApJL)

X (arcsec)

Y (arcsec)

radio imaging observations (Fleishman et al. 2020, Science)

Extrapolation from photospheric magnetic field (Wiegelmann and Solanki 2004)→

← magnetoseismology (Yang et al. 2020, Science)

Overview of magnetic-field induced transition, MIT

2p'

1S

- External magnetic fields mix i and j and cause a new decay channel
 i → k: magnetic-field induced transition (MIT)
- Zeeman quenching: shorten the lifetime of levels (Schef et al. 2005, PRA)

M2

3T

50.0

49.0

Wavelength (Å)

48.0

0

48.0

49.0

Wavelength (Å)

50.0

A simple three-level system

Overview of MIT in Fe X

Methodology

Hinode/EIS: solar corona and upper transition region emission lines in the wavelength ranges 170 - 210 Å (SW) and 250 - 290 Å (LW)

compare the observed 257/Ref. from EIS with theoretical predictions LR(T,N,B)

- Reference line: insensitive to B
- Density diagnostic: intensity ratio with Fe X 175
- Temperature diagnostic: intensity ratio with Fe X 345, DEM
- Spectral modelling: CHIANTI database, Int(T,N,B)

coronal magnetic field measurement – example 1

- 174 and 175 as reference lines (Si et al., ApJL, 2020)
- 174/175 for density determination
- observed intensity ratios from Brown et al. ApJS, 2008, an active region observed on Nov. 4, 2006 on the solar disk from Hinode/EIS

The field strength we determine is around 270 G.

coronal magnetic field measurement – example 2

Landi et al. ApJ, 2020

Assumption: $A_{MIT} < A_{M2}$, MIT transition does not affect the M2 intensity

$$\frac{I(\mathrm{MIT})}{I(\mathrm{M2})} = \frac{I(257)}{I(\mathrm{Ref.})} \cdot R(\frac{\mathrm{Ref.}}{\mathrm{M2}}) - R(\frac{\mathrm{E1} + \mathrm{M2}}{\mathrm{M2}})$$

reference line: 184 Å

- Density measurement: Fe X 174/175, Fe XI 182/188
- One example: AR10978 maps on 12 December(11:43:36 UT) 2007

Landi et al. 2020, 2021 Brooks & Yardley 2021 Brooks et al. 2021

Validation: Forward modeling with a 3D MHD model

Chen et al. 2021a,b, Liu et al. 2022, ApJ

- Synthesize the Fe X line intensities from 3D MHD model
- Density diagnostics: Fe X 175/174 line ratio
- Temperature diagnostics: Fe X 184/345 line ratio

(a): B_{model} (b)-(f): B_{MIT} derived using different ref. lines (a) Fe X 174 Å (EW) 20 1200 900 G 80 20 60 600 300 (mM) 20 300 600 900 1200 0 0 B_0 (G)

20

40

x (Mm)

60

(mM) x 20

60

x (Mm)

the MIT technique could provide reasonably accurate coronal magnetic field measurements in active region

 $B_0(G)$

300 600 900 1200 0 300 600 900 1200 0

(c) Fe X 177 Å

(e) Fe X 255 Å

300 600 900 1200

 B_0 (G)

3.0

2.5

2.0

1.5

1.0

0.5

00

(d) Fe X 184 Å

300 600 900 1200 0

 $B_0(G)$

(b) Fe X 175 Å

 B_0 (G)

Limitations and uncertainties

- Only field strength can be measured, but not the direction
- Uncertainty in atomic data:

 ΔE : 20% uncertainty from the recent SUMER measurements (Landi et al. 2020) CHIANTI v.10 – transition and collisional data from R-matrix (Del Zanna et al. 2012)

Intensity calibration: short- and long-wavelength

Li et al. 2021, 2022:

- large-scale MCDHF calculations for energy levels and radiative data for states up to n=4
- Dirac Atomic R-matrix calculation for electron-impact collision strengths

Summary

- The magnetic-field-induced transition method has been developed and was verified in the laboratory.
- The pseudo-degeneracy of two levels in Fe X causes the MIT@257 Å line to be sensitive to the relatively small magnetic fields expected in the solar corona.
- Forward modeling with 3D MHD models has verified that the MIT technique could provide reasonably accurate coronal magnetic field measurements in active regions.
- The MIT method has been applied to HINODE/EIS observations and illustrates the potential of a new diagnostic technique for coronal field strength measurement.
- Further efforts are necessary on both theoretical and observational side to provide a better estimation of magnetic field using the MIT method.
- It is also highly desirable to combine different magnetic field techniques to achieve a better understanding of coronal magnetism.

Thanks for your attention!