Doppler shifts of spectral lines formed in the solar transition region and corona

Yajie Chen^{1,2}, Hardi Peter¹, Damien Przybylski¹, Hui Tian², Jiale Zhang²

¹Max Planck Institute for Solar System Research ²School of Earth and Space Sciences, Peking University

Solar transition region

Tian 2017, RAA

Peter & Judge 1999, ApJ

Doppler shifts of the transition region line

Tu et al. 2005, Science

Pneuman & Kopp 1978, Solar Physics

Doppler shifts of spectral lines in previous 3D models

Peter et al. 2006, ApJ

Hansteen et al. 2010, ApJ

Doppler shifts of the transition region line

Previous model

Hansteen et al. 2010, ApJ

IRIS observations

Current model

Chen et al. 2022, A&A

- We constructed a 3D radiation MHD model extending from the upper convection zone to the lower corona.
- Our model self-consistently maintains network fields and allows a steady corona of 1 MK.

Doppler shifts of the transition region line

Previous model

Hansteen et al. 2010, ApJ

IRIS observations

Current model

Chen et al. 2022, A&A

- We constructed a 3D radiation MHD model extending from the upper convection zone to the lower corona.
- Our model self-consistently maintains network fields and allows a steady corona of 1 MK.
- The model shows a clear imbalance of area coverage of redshifts in the transition region.

Maps of intensity and Doppler shifts for different lines

Doppler shifts of spectral lines in our model

- Transition region lines show an average net redshift (\checkmark)
- The net Doppler shifts change from red in the transition region to blue in the corona (\checkmark)
- Transition region lines show redshifts almost exclusively (√), and only ca. 10% of the quiet Sun is covered by blueshifts (X)
- Doppler maps show patterns reminiscent of nests of spicules (X)

Missing physics? Limited spatial resolution?

Doppler shifts of spectral lines in our model

- Vertical maps of various properties in and around selected loops
- Processes contributing to Doppler shifts
 - ① transition region brightenings unrelated to coronal emission
 - 2 pressure enhancement in the transition region
 - ③ siphon-type flows
 - (4) boundaries between cold and hot plasma

(1) transition region brightenings unrelated to coronal emission (30%)

(2) pressure enhancement in the transition region (>50%)

(3) siphon-type flows (a few examples)

④ boundaries between cold and hot plasma (14%)

Imaging observations of the Ne VII 465 Å line

Credit to Hui Tian (huitian@pku.edu.cn)

Conclusions

- We constructed a 3D MHD model, in which network fields and a steady corona of 1 MK is self-consistently maintained.
- Our model reproduces the observed change of average Doppler shifts from redshift in the transition region to blueshift in the corona.
- The model shows a clear imbalance of area coverage of redshifts versus blueshifts in the transition region.
- We determine that (at least) four processes generate the systematic Doppler shifts
 - pressure enhancement in the transition region (50%)
 - transition region brightenings unrelated to coronal emission (>30%)
 - boundaries between cold and hot plasma (14%)
 - siphon-type flows (a few examples)

Thanks!