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Abstract. As an alternative to the equation of radiative equi-
librium, the equation of thermal balance of electrons is used
in order to derive temperature structures in NLTE model stel-
lar atmospheres. The calculations are accomplished for various
stellar parameters comprising different stellar types, and both
methods are compared. It turns out that the application of the
electron thermal balance equation is superior to using the stan-
dard equation of radiative equilibrium in the outer, line forming
parts of stellar atmospheres and beyond.
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1. Introduction

The numerical modeling of a NLTE stellar atmosphere is a com-
plex task. In order to determine the atmospheric structure it is
necessary to solve for all variables throughout the atmosphere,
i.e., temperature, electron density, population numbers, radial
distance, velocity fields, etc. All quantities have to be calcu-
lated globally and simultaneously. Thus, it is natural to seek for
methods that enable to lower the computational costs necessary
both for the model calculation and for the solution of a particu-
lar equation. The determination of the temperature structure (in
parallel with all other variables) of a stellar atmosphere is the
most time consuming part of such a calculation.

The complicated interaction between radiation and atomic
population numbers causes drastic changes of temperature, es-
pecially in the outer atmospheric layers. Although the computa-
tional time per iteration is almost the same as if the temperature
were fixed (i.e., all variables except temperature are solved),
the number of iterations necessary to obtain a converged solu-
tion is considerably larger when the temperature is solved for
as well. The computer codes that are aiming at such a correct
temperature determination usually need a huge amount of com-
putational time to find a consistent NLTE solution, and they
quickly become hardly usable for aroutineanalysis of a larger
number of stars.

There are two commonly used ways of calculating temper-
atures in the determination of NLTE model atmospheres. The
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first one uses the condition of constant flux (flux correction,
or the differential form of radiative equilibrium), the second
one is based on the integral form of the condition of radiative
equilibrium. The flux correction method is useful at large opti-
cal depths, since it ensures flux conservation. Its application to
NLTE model atmospheres calculations was described, e.g., by
Gustafsson (1971), Frandsen (1974), Hubeny (1988) and Kubát
(1996).

The condition of radiative equilibrium is commonly used
for determining the temperature stratification throughout the
line forming regions and also in the optically thin part of the at-
mosphere. First NLTE calculations of model atmospheres that
considered the equation of radiative equilibrium were performed
by Feautrier (1968) and by Auer & Mihalas (1969a). Subse-
quently, Auer & Mihalas (1969b) incorporated the equation of
radiative equilibrium into their method of complete lineariza-
tion. It became standard for a variety of computer codes (e.g.,
Mihalas et al. 1975, Kudritzki 1976, Hubeny 1975, 1988 for
the plane parallel static case; Mihalas & Hummer 1974, Gr-
uschinske 1978 for the spherically symmetric static case). The
new generation of codes based on the accelerated lambda it-
eration method (Werner 1986, Gabler et al. 1989, Hamann &
Wessolowski 1990) also determines the temperature structure
using the equation of radiative equilibrium.

The NLTE blanketing codes (e.g., Schmutz 1991, Dreizler
& Werner 1993, Hubeny & Lanz 1995) solving for the temper-
ature structure require an enormous amount of computational
time (depending on the number of elements included and the nu-
merical efficiency of the code), and are consequently well suited
only for the analysis of individual stars or smaller subsets. For
a routine analysis of larger stellar samples, however, they are
of only limited practical use (see also Pauldrach et al. 1997,
Hillier & Miller 1998). In order to tackle the latter problem,
Santolaya-Rey et al. (1997) decided to develop an extremely
fast NLTE model atmosphere/line formation code. This was
enabled by several substantial approximations regarding tem-
perature and density structure. The most severe restriction was
the assumption of a constant temperature in the outer parts of
the atmosphere.

Keeping in mind the basic strategy of Santolaya-Rey et al.,
we made several attempts to find faster methods for the deter-
mination of the temperature structure than the one by using the
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equation of radiative equilibrium. Here we report on first results
of applying the method of thermal balance of electrons.

2. Energy equilibrium in stellar atmospheres

Let us assume that energy is transported through the stellar at-
mosphere only via radiation, i.e., we neglect convection. There-
fore, we restrict our analysis to hot stars, where atmospheric
convection is not so important.

2.1. Radiative equilibrium

The condition of radiative equilibrium (see, e.g., Unsöld, 1955,
or Mihalas 1978)

4π

∫ ∞

0
(κνJν − ην) dν = 0 (1)

became a standard equation for temperature determinations in
the outer atmospheric layers (τR <∼ 2/3) in the course of con-
structing model stellar atmospheres both in LTE and NLTE. For
a discussion of various methods to calculate LTE radiative equi-
librium model atmospheres, see Mihalas (1978). Here we shall
consider only the NLTE case.

In Eq. (1),κν is the total opacity,ην the total emissivity,
andJν the mean intensity of the radiation field. This expression
accounts only for the radiative energy balance and simply states
that the total amount of radiative energy absorbed at a particu-
lar depth (4π

∫ ∞
0 κνJνdν) equals the total amount of emitted

radiative energy (4π
∫ ∞
0 ηνdν). The exchange of energy takes

place with the internal energy of atoms (via bound-bound and
bound-free transitions) and with the kinetic energy of electrons
(via bound-free and free-free transitions).

Thus we have three dominant energy pools (radiation, in-
ternal atomic energy, and kinetic energy of electrons – temper-
ature).

In standard calculations of NLTE model atmospheres, the
equation of radiative equilibrium is being solved in parallel with
the equations of statistical equilibrium, radiative transfer and the
equation of motion, which for static atmospheres reduces to the
equation of hydrostatic equilibrium.

Within this standard framework, however, our experience
shows that for some particular stellar parameters it is either
almost impossible to obtain convergence towards the correct
solution or that the convergence rate is rather slow. This indicates
that the condition of radiative equilibrium may not be the best
formulation for certain combinations of basic stellar parameters.

The reason for the fault is simple. With respect to the tran-
sitions included into the equation of radiative equilibrium, only
bound-free and free-free processesdirectly affect the temper-
ature, whereas bound-bound radiative transitions have an only
indirect effect via the equations of statistical equilibrium.

Thus, if the bound-bound transitions dominate the radiative
energy balance, the real important transitions are numerically
“killed” and the result is a slow convergence of temperature.

2.2. Thermal balance of electrons

As an alternative to the equation of radiative equilibrium, it is
possible to use the equation for the thermal balance of electrons.
This equation considers heating and cooling of an electron gas
by collisions with atoms, by radiative ionization and recombi-
nation, and direct radiation heating and cooling via free-free
transitions.

This approach, of course, is not new. Since the pioneer-
ing work by Hummer & Seaton (1963) and Hummer (1963), it
has been widely used for the study of planetary nebulae (e.g.
Williams 1967, Ferland & Truran 1981, see also Osterbrock
1974 and Aller 1984). Nevertheless, its application to models
of stellar atmospheres remains isolated. Some of the few exam-
ples are the calculations by Drew (1985, 1989), who used this
method to determine wind temperatures of OB stars, and more
recently by Pauldrach et al. (1997) and Hillier & Miller (1998).
The equation for the thermal balance of electrons follows from
the Boltzmann kinetic equation, and for equilibrium we have
(e.g., Lifshitz & Pitaevski 1979)

QH − QC = 0, (2)

whereQH is the total amount of energy supplied to electrons
(heating) andQC corresponds to the inverse process (cooling).
Let us consider the physical mechanisms which control the ther-
mal balance of electrons and radiative equilibrium in detail.

2.3. Free-free transitions

Free-free transitions transfer energy between the radiation field
and electrons. The total amount of energy transferred from ra-
diation to electrons via absorption (heating) can be expressed
as

QH
ff = 4πne

∑
j

Nj

∫ ∞

0
αff,j(ν, T )Jνdν (3)

wherene is the electron density,Nj the NLTE population of
the ionj, αff,j(ν, T ) is the free-free absorption cross section,T
stands for temperature, andJν is the mean intensity of radiation.
Similarly, for the inverse process (cooling), the total amount of
transferred energy is

QC
ff = 4πne

∑
j

Nj

∫ ∞

0
αff,j(ν, T )

(
Jν +

2hν3

c2

)
×

×e−hν/kT dν. (4)

whereh is the Planck constant,k is the Boltzmann constant,
andc is the speed of light. The free-free heating and cooling
terms also enter the equation of radiative equilibrium. Thus,
free-free radiative losses areRL

ff = QH
ff and free-free radiative

gainsRG
ff = QC

ff .

2.4. Bound-free transitions

Bound-free transitions transfer energy between the radiation
field and both electrons and atoms. Since we are dealing with
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the thermal balance ofelectrons, we shall consider only the en-
ergy transferred to electrons (and back), so that the part of the
energy transferred to atoms must be subtracted. The correspond-
ing expression for heating by ionization reads

QH
bf = 4π

∑
l,k

n∗
l blwk

∫ ∞

0
αbf, lk(ν)Jν

(
1 − νlk

ν

)
dν. (5)

Heren∗
l is the LTE population of the lower bound level,bl is the

corresponding departure coefficient,wk is the occupation prob-
ability of the upper level (see Kubát 1997),νlk is the frequency
of the ionization edge, andαbf, lk(ν) is the corresponding pho-
toionization cross-section (note that below the ionization edge
αbf, lk(ν) = 0). Similarly, for cooling holds

QC
bf = 4π

∑
l,k

n∗
l bkwl

∫ ∞

0
αbf, lk(ν)

(
Jν +

2hν3

c2

)
×

×e−hν/kT
(
1 − νlk

ν

)
dν. (6)

In this equation,wl is the occupation probability of the lower
level. The atomic level occupation probabilities were introduced
by Hummer & Mihalas (1988) to account for a more precise
cutoff of the highest atomic levels than by standard methods.
Their implementation to model atmosphere codes is described
by Hubeny et al. (1994) and Kubát (1997). For high gravity
stars (white dwarfs) with extreme dense lower atmospheres,
they are important. For low gravity stars with corresponding
lower densities, however, it is acceptable to setwl = 1 for all
explicit levels.

On the other hand, the standard expressions for bound-free
radiative losses and gains are a bit different, since they concern
the total radiative energy pool. The radiative losses are

RL
bf = 4π

∑
l,k

n∗
l blwk

∫ ∞

0
αbf, lk(ν)Jνdν. (7)

and the radiative gains

RG
bf = 4π

∑
l,k

n∗
l bkwl

∫ ∞

0
αbf, lk(ν)

(
Jν +

2hν3

c2

)
×

×e−hν/kT dν. (8)

2.5. Bound-bound transitions

Bound-bound transitions transfer energy between radiation and
atoms. They concern only the radiative equilibrium, not the ther-
mal one. The bound-bound radiative losses are

RL
bb = 4π

∑
l,m

n∗
l blwm

∫ ∞

0
αbb, lm(ν)Jνdν. (9)

and the radiative gains

RG
bb = 4π

∑
l,m

n∗
mbmwl

∫ ∞

0
αbb, lm(ν)

(
Jν +

2hν3

c2

)
×

×e−hν/kT dν. (10)

Heren∗
l , bl, andwl is the LTE population, departure coefficient,

and occupation probability for the lower levell (and similarly
for the upper levelm), andαbb, lm(ν) = (πe2/mec

2)flmφ(ν).
In the last expression,e is the electron charge,me is the electron
mass,c is the speed of light,flm is the oscillator strength, and
φ(ν) is the line profile.

2.6. Collisions

Collisions transfer energy between electrons and atoms, they
do not affect the radiation field. For collisional deexcitation or
recombination (heating) we use the expression with occupation
probabilitieswm (see Kub́at 1997)

QH
c = ne

∑
l,m

bmn∗
l wmqlm(T )hνlm. (11)

Hereqlm(T ) is the collision strength,l denotes the lower level,
andm is the index of the upper level. For cooling collisional
terms (excitation and ionization), the following equation is
valid,

QC
c = ne

∑
l,m

bln
∗
l wmqlm(T )hνlm. (12)

Note, thatQC
c = QH

c holds in LTE, sincebl = bm = 1.

2.7. Total radiative equilibrium and thermal balance
equations

Combining Eqs. (3), (4), (7), (8), (9), and (10), we obtain the
total radiative equilibrium equation (1). On the other hand, com-
bining Eqs. (3), (4), (5), (6), (11), and (12), we obtain the total
thermal balance equation (2).

3. Comparison of radiative equilibrium
and thermal balance methods

In order to investigate in how far an application of the elec-
tron thermal balance is appropriate, we compared it with the
standard equation of radiative equilibrium. To this end, we cal-
culated very simple static spherically symmetric pure hydrogen
and hydrogen-helium NLTE model atmospheres for several stel-
lar parameters comprising different spectral types.

3.1. Model atoms

Our hydrogen model atom consists of ten levels of Hi plus
continuum. The atomic data (for hydrogen) are as follows: The
oscillator strengths are after Wiese et al. (1966), lines were as-
sumed to have depth independent Doppler profiles. The pho-
toionization cross sections are calculated using the standard
formula (e.g. Mihalas 1978, Eqs. 4-114). The free-free cross
section is calculated by means of Eqs. 4-122 in Mihalas (1978).
Gaunt factors both for bound-free and free-free transitions are
evaluated using fits by Mihalas (1967). Collisional ionization
rates are determined using the polynomial fit by Napiwotzki
(1993). For calculation of collisional excitation rates, the ex-
pressions in Mihalas et al. (1975) were used.
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Table 1.Summary of the atomic data used for model atmosphere cal-
culation

radiative collisional

ion b-b b-f f-f b-b b-f

H i 1 2 3 5 4
Hei 1 7 3 6 6
Heii 1 2 3 6 4

Notes:1 – Wiese et al. (1966); 2 – Mihalas (1978) Eqs. 4-114, Gaunt
factors after Mihalas (1967); 3 – Mihalas (1978) Eqs. 4-122, Gaunt
factors after Mihalas (1967); 4 – Napiwotzki (1993) polynomial fit;
5 – Mihalas et al. (1975); 6 – Mihalas & Stone (1968); 7 – Koester et al.
(1985) forn ≤ 3, hydrogenic (2) for highern.

Our helium model atom consists of 29 levels of Hei, 20
levels of Heii plus Heiii. All levels of Hei up to n = 4 are
considered separately, levels with5 ≤ n ≤ 9 are joined into two
levels for eachn, one for singlets and the second one for triplets.
The oscillator strengths are also after Wiese et al. (1966). The
Hei photoionization cross sections forn ≤ 3 are calculated
after Koester et al. (1985), for highern they are assumed to be
hydrogenic. The Heii photoionization cross sections are taken
as hydrogenic. The free-free cross section is calculated similar to
the case of hydrogen. All collisional rates for Heiand collisional
excitation rates for Heii are calculated after Mihalas & Stone
(1968). Collisional ionization rates for Heiiare calculated using
the polynomial fit by Napiwotzki (1993). This set of atomic data
is summarized in Table 1.

3.2. Computer program

We used the computer code described by Kubát (1994, 1996,
1997) with the appropriate modifications allowing for the in-
clusion of electron thermal balance. It calculates temperature,
density, radius and population numbers assuming hydrostatic,
radiative and statistical equilibrium. These equations are solved
using a linearization (Newton-Raphson) method, whereas the
radiative transfer equation is solved by means of approximate
lambda operators.

We calculated two sets of models, the first one using the
equation of radiative equilibrium, whereas the latter was re-
placed by the equation of electron thermal balance in the second
set. Although Newton-Raphson (linearization of temperature,
electron density and departure coefficients in parallel) was used
in both cases, test calculations showed that the much simpler
approach of linearizing only the temperature terms works satis-
factorily as well. Note, that we always applied the flux correction
method to determine the temperature structure in the optically
thick parts (τR >∼ 2/3) of the atmosphere.

3.3. Results

The results presented in this section concentrate on the outer at-
mosphere (τR <∼ 2/3), since by using the flux correction method
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Fig. 1. Temperature structure (upper panel) and convergence of the
temperature (lower panel) for the pure hydrogen NLTE model atmo-
sphere with all lines considered forTeff = 40000K, log g = 4.5 and
R = 15R�.

in the inner part we have successfully ensured the conservation
of total flux.

3.3.1. O star model

For a spherically symmetric O star model, we choose the fol-
lowing basic parameters: luminosityL = 5.2 · 105L�, radius
R = 15R�, and, in order to enable the static approximation,
the rather unrealistic massM = 260M�. These parameters
giveTeff = 40000K andlog g = 4.5.

We started our calculation from a converged LTE model
for the above parameters. The resulting temperature profiles are
plotted in Fig. 1 (pure hydrogen model) and Fig. 2 (hydrogen-
helium model). The method of using radiative equilibrium failed
to converge for the case of the full hydrogen-helium model with
all lines. Nevertheless, by putting the Heii Lyman lines into
detailed radiative balance, we could compare the convergence
rate of both methods also for hydrogen-helium models. The
difference between the models resulting from our alternative
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Fig. 2. Temperature structure (upper panel) and convergence of the
temperature (lower panel) for the hydrogen-helium NLTE model at-
mosphere with all lines considered (dotted line) and Heii Lyman lines
set into detailed balance (fully drawn and dashed lines) forTeff =
40000K, log g = 4.5 andR = 15R�. The ratioNHe/NH = 0.1.

energy equations is negligible both for the pure hydrogen as
well as the hydrogen-helium model.

The convergence rate for the pure hydrogen model is dis-
played in the lower panel of Fig. 1. Both methods converge well,
although the convergence for the electron thermal balance equa-
tion is significantly better. Similar conclusions can be drawn for
the hydrogen-helium models (lower panel of Fig. 2). Thus we
may conclude that for the case of O stars the method of electron
thermal balance is superior.

3.3.2. B star model

We have chosen the following parameters for a “typical” B star:
luminosity L = 1.44 · 104L�, radiusR = 10R� and mass
M = 11.5M�, which yieldTeff = 20000K andlog g = 3.5.

Similar to the O-star case, we started our calculation from
a converged LTE model for the above parameters, and we have
calculated both pure hydrogen and hydrogen-helium models.
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Fig. 3. Temperature structure (upper panel) and convergence of the
temperature (lower panel) for the pure hydrogen NLTE model at-
mosphere with all lines exceptLα considered (theLα line is set to
the detailed radiative balance) forTeff = 20000K, log g = 3.5 and
R = 10R�.

For both models, the hydrogen Lyman-α line was set into the de-
tailed radiative balance. In addition, the hydrogen-helium mod-
els were calculated using the assumption of detailed balance in
Heii Lyman lines. They are optically thick throughout the at-
mosphere, and, in addition, their influence on the temperature
structure is negligible due to the weak radiation field at their
transition frequencies. The resulting temperature profiles are
displayed in Figs. 3 and 4. The difference between both of them
is very small. The convergence of temperature is displayed in
the lower panel of Figs. 3 and 4.

In conclusion, for this B star parameter range the method
of using the electron thermal balance is much better suited than
the standard radiative equilibrium approach.

3.3.3. Hot white dwarfs models

As an example for a hot white dwarf, we have chosen a star with
luminosityL = 1.48 · 103L�, radiusR = 0.13R� and mass



592 J. Kub́at et al.: Thermal balance of electrons in calculations of model stellar atmospheres

10000

15000

20000

25000

30000

35000

40000

-7 -6 -5 -4 -3 -2 -1 0 1 2

te
m

pe
ra

tu
re

 (
K

)

log m (g/cm2)

Teff=20000K, log g=3.5, He/H=0.1

thermal balance
radiative equilibrium

-5

-4

-3

-2

-1

0

0 20 40 60 80 100 120 140 160 180

lo
g 

re
la

tiv
e 

ch
an

ge

iteration

Teff=20000K, log g=3.5, He/H=0.1

thermal balance
radiative equilibrium

Fig. 4. Temperature structure (upper panel) and temperature conver-
gence (lower panel) for the hydrogen-helium NLTE model atmosphere
with all lines considered (except hydrogen Lyman-α line and Heii Ly-
man lines set into detailed balance) forTeff = 20000K, log g = 3.5
andR = 10R�. The ratioNHe/NH = 0.1.

M = 0.6M� (a typical white dwarf mass), yieldingTeff =
100000K andlog g = 6.0.

The hydrogen-helium models were calculated using the as-
sumption of detailed balance in the Heii Lyman lines. The re-
sults are displayed in Figs. 5 and 6. Contrary to the case of B
stars, no differences are visible and the models are almost iden-
tical.

Both models converge quickly for both methods, so that for
hot white dwarf models the use of radiative equilibrium remains
acceptable. Note, however, that even here the electron thermal
balance method converges faster.

3.3.4. Cooler white dwarfs models

A slightly different situation is encountered for the case of cooler
white dwarfs. As a representative example, we have chosen a
model with luminosityL = 1.2L�, radiusR = 0.04R�, and
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Fig. 5. The same as Fig. 1 for the hot white dwarf model withTeff =
100000K, log g = 6.0 andR = 0.13R�.

again a typical white dwarf massM = 0.6M�. These param-
eters giveTeff = 30000K andlog g = 7.0.

For this model then and for thepure hydrogenatmosphere,
our findings are consistent with the above results for the hotter
star, i.e. identical temperature structures and a better conver-
gence of the electron thermal balance method (Fig. 7). A dif-
ferent situation applies for the hydrogen-helium model. Here,
the use of radiative equilibrium resulted in divergence caused
by Heii Lyman continuum, whereas the electron thermal bal-
ance method converged relatively fast to a reasonable temper-
ature structure (Fig. 8). The electron thermal balance method
overcomes the instability caused by this transition and is con-
sequently better suited also in this case.

4. Discussion

The results of the preceding section showed the supremacy of
calculations based on the electron thermal balance, compared
to the standard equation of radiative equilibrium, at least for
our model parameters. The better performance is more strik-
ing in cases where strong optically thick lines exist in those
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Fig. 6. Temperature structure (upper panel) and convergence of the
temperature (lower panel) for the hydrogen-helium NLTE model at-
mosphere with all lines considered (except Heii Lyman lines set into
detailed balance) forTeff = 100000K, log g = 6.0 andR = 0.13R�.
The ratioYHe/YHe = 0.1.

atmospheric regions where the continuum is optically thin. The
basic difference between these two methods lies in the treatment
of lines. It must be emphasized that line radiative rates do not
explicitly depend on temperature.

For optically thin continua and optically thick lines most
of the absorbed radiative energy is absorbed in line transitions.
Only a minor part is absorbed (and re-emitted) in the contin-
uum. Since the electron thermal balance equation does not con-
sider radiative line processes at all, these strong lines do not
directly affect the temperature. On the other hand, the equation
of radiative equilibrium considers lines which may completely
dominate the radiative equilibrium balance in the extreme cases
of strong lines formation far outside the atmosphere. In conse-
quence, radiative equilibrium is not able to extract the important
information from the bound-free and free-free rates, which are
numerically “killed” by unimportant information from bound-
bound rates. (Note, however, that by a consistent use of the
ALI-formalism also in the equation of radiative equilibrium,
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Fig. 7. The same as Fig. 1 forTeff = 30000K, log g = 7.0 andR =
0.04R�.
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Fig. 8.Convergence of the temperature for the hydrogen-helium NLTE
model atmosphere with all lines considered (except Heii Lyman set
into detailed balance) forTeff = 30000K, log g = 7.0 and R =
0.04R�. The ratioNHe/NH = 0.1.
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the “effective” bound-bound rates entering the energy balance
can be largely reduced compared to their actual value.) Espe-
cially in the outer parts of the atmosphere, where a couple of
strong lines are still optically thick when the continuum has
already become optically thin, this dominance of bound-bound
rates is a specific severe problem. On the other hand, our consid-
eration also explains why radiative equilibrium works well for
hot white dwarfs. These objects have noextendedregion where
optically thick lines and an optically thin continuum exists in
parallel, since the lines are formed just above the photosphere.

The new method of electron thermal balance has also the
very desirable feature that the convergence is fastest over the first
three decades of relative changes, which is the typical number
where normal models are considered as being converged. In
these first decades the comparison between the two methods
extremely favors the new one.

We should also mention some difficulties of the electron
thermal balance method. The electron thermal balance method
occasionally fails just above the point whereτR = 2/3, i.e., the
point where we usually switch from flux correction (differential
form) to the integral description of radiative equilibrium. This
was true, e.g., for the cool white dwarf models described above.
The easiest way to overcome this problem is to use radiative
equilibrium for the (usually few) critical depth points and to
switch to the electron thermal balance just above them. The fast
convergence of the electron thermal balance method is preserved
and the scheme is stable again. On the other hand, no failure of
the electron thermal balance method was observed when the
departure coefficients were kept fixed in the linearization step
and recalculated later.

One might also argue that the supremacy of the electron
thermal balance method may be due to some hidden fault in our
linearization scheme for the radiative equilibrium method. This
possibility can not be completely excluded, but it seems to be
unprobable. The fact that the model atmospheres of the hottest
stars converge quickly even by using the radiative equilibrium
method lowers the possibility of such a fault. In any case, the
method of thermal balance of electrons has proven its efficiency.
Of course, it would be highly desirable if somebody repeats this
comparison study using a completely independent code.

5. Conclusions

We have compared two methods of determining the temperature
in the outer parts of stellar model atmospheres. The first one
uses the equation of radiative equilibrium, the second one the
equation of thermal balance of electrons. We have shown that
the latter method yields a faster convergence rate and that it
is able to overcome the difficulties caused by strong optically
thick lines, where the method using radiative equilibrium fails.
Therefore we highly recommend this method for calculating
temperature stratifications in stellar atmosphere models.
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